

2 MARSHAM STREET LONDON SWIP 3EB 01-276 3000

My ref:

Your ref:

The Rt Hon Kenneth Ba Secretary of State fc Elizabeth House York Road London

SE1

ence

can Kannetu

As you know we have been discussing our proposals for needs assessment with the Local Authority Associations over the last five months. These assessments of the need for expenditure by each local authority will form the basis of grant distribution and as such play a key role in the community charge system to be implemented next April.

We will shortly need to construct some preliminary packages of possible needs assessments in order to provide a basis for our forthcoming discussions with E(LF). This will be necessary to illustrate for colleagues the potential effect on the community charges for individual local authorities of the various decisions which are needed on the overall shape of the settlement for 1990/91.

I attach a Report which summarises the result of discussions with the Local Authority Associations in which officials from yours and other Service Departments have participated. This includes a number of options for education which are exemplified in Annex B (Table 1) to the Report.

In constructing a package of needs assessments for E(LF) it would be helpful to have your views on options for education, and those of colleagues on their particular services, by 6th June if possible.

I am copying this letter to Douglas Hurd, Kenneth Clarke, Paul Channon, John Moore, Cecil Parkinson, John MacGregor, John Moore, Richard Luce, John Major and Sir Robin Butler.

NICHOLAS RIDLEY

LOCAL GOVERNMENT FINANCE

NEW SYSTEM WORKING GROUP

NEEDS ASSESSMENT SUB-GROUP

REPORT OF THE SUB-GROUP ON PROPOSALS FOR NEEDS ASSESSMENTS

INTRODUCTION

- 1. At the meeting of the New System Working Group on 12 December 1988, it was agreed that a sub-group should be set up to examine in more detail the proposals put forward by DOE for needs assessments for the new system. These were set out in paper LGF(G)(NG)(88) 7. The sub-group met 41 times and discussed 142 papers covering a wide range of topics. (A list of these papers is attached at Annex C for information.)
- 2. This report is divided into sections following the grouping of services which formed part of the original DOE proposals. Each section contains:
 - a short summary of the original DOE proposal;
 - a brief discussion of the topics considered by the subgroup noting the views expressed by the Associations;
 - a short description of the options which the sub-group wishes to put forward to the main group, together with an indication of the Associations' support for each.

The views attributed to Associations are at this stage those expressed by officials in the course of discussions within the sub-group.

The sections of the Report are as follows:-

- (I) Education;
- (II) Personal Social Services;
- (III) Police;
- (IV) Fire;
- (V) Highway Maintenance;
- (VI) Other Services;

Each of these considers current expenditure on the particular service blocks. DOE proposed that there should be a single separate capital financing assessment covering the costs of financing both new and past capital expenditure. This is discussed in section (VIII) below.

- 3. The sub group considered that the issue of an adjustment to reflect the higher costs faced by authorities in particular areas (eg London) in providing a standard level of service was one that affected all services. As a result it was discussed separately, and these discussions are reported in Section (VII) below.
- 4. Annex A provides a list of the services included in the other services block. It also provides the totals for each service block based on 1989/90 GREs. The overall needs assessment for Shire Counties is made up of an element from each of the service blocks. The London boroughs and Metropolitan Districts will have an element for each service except police and fire. In the Metropolitan Districts these services are dealt with by Joint Authorities which receive a separate assessment, and in London by

the Metropolitan Police Authority and the London Fire and Civil Defence Authority. The assessments for Shire Districts will consist of an element for other services and capital.

5. Annex B to this Report exemplifies a number of possible options for needs assessments service by service. Further options are described in the text but not exemplified. The New System Working Group/Settlement Working Group is asked to consider these, with a view to selecting one or more illustrative packages to be included in the Report to CCLGF.

(I) EDUCATION

(a) DOE/DES PROPOSAL

1.1 DOE/DES proposals for a simplified needs assessment for education are described in detail in paper NSG:NASG (89) 1 Education 1. They are summarised below.

The 13 separate assessments in GREs would be consolidated into four service blocks covering the following services:

Primary Education of pupils aged 5 to 10 years plus an allowance for school meals.

Secondary Education of pupils aged 11 to 15 years plus an allowance for school meals.

Post 16 Education for secondary pupils over school leaving age, further education and LAHE students. In addition provision made for the young unemployed has been subsumed in this block.

Other Provision for the under 5's, the youth service Education and adult education.
Services

1.2 Each block would be distributed as follows:-

Primary The main determinant of need to spend (as with GREs) to be the number of pupils in maintained schools aged 5 to 10 years. Appropriate cost adjustments to be made for additional educational needs, free school meals, sparsity and area cost differences (see below).

Secondary

The main determinant of need (as at present) to be the number of pupils in maintained schools aged 11 to 15 years. The same cost adjustment factors as for primary education to be applied.

Post 16

The main determinant of need to be a client group estimate based on the actual numbers of sixth form pupils in schools and relevant students in further education and higher education. Cost adjustments to be made for additional educational needs, sparsity and area cost differences.

Other Educational Services

The main determinant of need to be the population aged under 5 years old plus population aged 11 years and over. Cost adjustments to be made for additional educational need and area cost differences.

DETAILS OF COST ADJUSTMENTS

Additional Educational Need

1.3 The paper Education 1 contains a review of the method of allowing for additional educational need (AEN). After analysis of the relationship between a range of indicators of need and a number of social and economic factors it proposes that the AEN index should be composed of 3 factors - proportions of children in households in receipt of income support, of children in lone parent households and of children who were or whose parents were born outside the U.K., Ireland, the U.S.A. or the Old Commonwealth. These three factors would be summed with a weight of 1.5 applied to the first two. Three options are identified for weighting the AEN adjustment based on a detailed service level analysis of special school, within ordinary school and support services costs. These are a low AEN option (overall weight 14%), a mid AEN option (weight 21%) and a high AEN option (weight 24%).

Sparsity

1.4 Population sparsity results in authorities having to operate smaller schools and transport pupils further to schools, both leading to higher costs. It is proposed that the present method of allowing for these effects, based on regression analysis of standardised unit costs by school size and actual transport costs to produce a sparsity adjustment, be retained. But that the possibility of some minor simplification might be brought forward during consultation.

Free School Meals

- 1.5 An adjustment directly based on the estimated number of pupils in each authority in receipt of income support.
- (b) TOPICS CONSIDERED BY THE GROUP

The group met 7 times and discussed 41 papers. The following main topics were raised in discussion.

- (i) Structure of the Overall Assessment
- 1.6 The <u>sub-group</u> agreed to the proposed four service block structure.
- 1.7 The <u>ACC</u> suggested that the careers service should be transferred from the OSB block, where the DOE had proposed to include it, to the Education assessment. The <u>sub-group</u> agreed to the proposal. It was also agreed that the careers control total be split 70% to the Secondary school block and 30% to the post 16s block.
- (ii) Structure and Client Groups for Each Block
- 1.8 The \underline{ACC} argued that there were additional costs associated with pupils aged 14 and 15 years compared with younger secondary school pupils. Analysis provided by \underline{DES} showed little variation in 14/15 year olds as a proportion of secondary pupils between

authorities. It was agreed that these results meant that giving extra weight to older secondary school pupils would have little distributional effect. <u>ACC</u> requested that future trends should be monitored.

- 1.9 The ALA questioned the use of pupil/student numbers as the client base for the post 16 assessment. They argued that provision of these services was largely based on historical provision and that population aged 16 to 19 years might be a better basis for client numbers. DES exemplified the effect of this option. A few authorities showed quite marked changes in needs assessment. OPCS have always made it clear that their population estimates are less likely to be reliable the narrower the age band covered. ALA said they did not wish to see this option exemplified for the Report.
- 1.10 When <u>DOE/DES</u> brought forward their proposals the detail of how to weight and combine pupil/student numbers to form the post 16 client group had not been fully developed. <u>DES</u> have now developed a method of integrating the client groups for distribution of this block. This was discussed by the <u>sub-group</u> which agreed to adopt the proposed method. The <u>ACC</u> asked that consideration be given to an early review of the weights used.
- In the original proposals the method described calculating the client group in the other educational services block involved a common control total for the constituent populations (i.e. under 5's and aged 11 years and over). The AEN component was distributed by the sum of the populations, and the remainder was split and distributed by the populations separately. DES have described and exemplified an alternative method which allows for a distinct control total to attach to each of the two age groups within the other service block. The methods would produce very similar needs assessment distributions for 1990/91, but in later years any change in emphasis in the make-up of this block could produce more marked differences. Details of the two options are given in Education (24). The Associations stated a preference for the second, new method.

(iii) Cost Adjustments Additional Educational Needs 1.12 Much of the discussion of the sub-group concerned AEN, particularly the appropriateness of the weight allocated to AEN pupils/students in each service block. It also explored the evidence put forward by DES. The sub-group agreed that the new AEN index developed by DES was a reasonable simplification, to replace the six factor index used in GREs, although the ALA have expressed some reservations about the range and the homogeneity between areas of the factors proposed for the new index. 1.14 The ACC commented that all the DOE/DES proposals included a higher allowance for AEN than the 10% in the current GRE formula. They put forward proposals for alternative AEN which weightings are summarised in paper Education 16. These argued for less weight to be given to AEN factors than in the proposed AEN options, on the basis of an analysis of the constituent elements of each service block. The ACC proposed three further options for weighting AEN which give an overall weight of 9% (ACC low AEN option), 12% (ACC mid AEN option) and 14% (ACC high AEN option). The ACC have requested that their mid AEN option (12% weight) be exemplified. The ALA have proposed two alternatives, an overall weight 1.16 of 36% for AEN and raising the AEN index to a factor greater than 1, to meet their concern that neither the DOE/DES proposals nor existing GRE adequately meet the education needs in London. The supporting arguments for these options are summarised in paper Education 34. The ALA have requested that an option where the AEN index is raised to the power 1.4 in the primary and secondary blocks and the overall AEN weight is 27% (20% for the primary, secondary and post 16 blocks, 100% for the other services block) should be exemplified.

1.18 The <u>LBA</u> have requested that a range of options be brought forward from the sub-group; whilst the <u>AMA</u> have asked that all three of the options contained in the initial DOE/DES proposals should be retained.

Lone Parent Index

1.19 The AMA have conducted a detailed analysis of the merits of updating the Census-based lone parent factor using Income Support Statistics. They have concluded that this change is not supportable on the basis of the evidence at present, but asked that the importance of developing better methods of updating Census based indicators between Censuses is noted. The ALA supported this.

Sparsity

- 1.20 <u>DOE/DES</u> have brought forward proposals for a single 'all schools' sparsity adjustment to be applied to the primary, secondary and over 16's blocks in the same way as the separate primary and secondary school adjustments contained in the original proposals. Moving to such a common adjustment had little distributional effect.
- 1.21 The ACC have expressed reservations about the adequacy of the proposed adjustment in reflecting the full range of additional costs due to sparse populations. Specifically they argued that evidence they presented supported a higher allowance for cost differences attributable to variation in school size; and that the secondary school adjustment should not be based solely on transport cost differences.
- 1.22 <u>DOE/DES</u> argued that the cost variation shown by the <u>ACC</u> survey is adequately reflected in the way that the sparsity adjustment is derived.

- 1.23 <u>DES</u> have re-examined the question of whether to include an allowance for differences in secondary school size by controlling for additional educational need. They concluded that the range of values in the secondary school size index bears no clear relationship to the sparsity of an area and that many urban authorities emerge with a higher index than sparse rural areas.
- 1.24 The <u>ACC</u> believe that the current methodology understates the additional costs of educating pupils from sparse areas because it takes no account of authorities who have high transport costs or small school costs for policy or other reasons. They therefore propose a judgemental approach whereby the sparsity adjustment derived from the DES methodology would be doubled to reflect more realistically the additional costs.
- (c) OPTIONS FOR CONSIDERATION
- 1.25 The options for the needs assessment for education services selected for exemplification by the sub-group are:
- (i) ACC Mid AEN Option (Overall AEN adjustment of 12%)

 Presentation supported by the ACC, LBA.
- (ii) DOE/DES Low AEN Option (Overall AEN adjustment of 14%)

 Presentation supported by AMA, LBA.
- (iii) DOE/DES Mid AEN Option (Overall AEN adjustment of 21%)

 Presentation supported by AMA, LBA.
- (iv) DOE/DES High AEN Option (Overall AEN adjustment of 24%)

 Presentation supported by AMA, LBA.

(v) ALA Factorised Option (AEN adjustment of 27% with the index raised to the power 1.4)

Presentation supported by ALA, LBA.

These options are exemplified in Appendix B, Annex 1.

(II) PERSONAL SOCIAL SERVICES

(a) DOE/DH PROPOSALS

2.1 <u>DOE/DH</u> proposed that the PSS needs assessment should be split into three service blocks: Childrens' Services (for clients aged 0 to 17 years); services for the Elderly (aged 65 years and over) and Other Social Services (aged 18 to 64 years). The options presented for the service blocks were within a broad ' client group times unit cost' framework.

(i) The Children's Assessment

2.2 Two options were presented. The first was based directly on research by the Personal Social Services Research Unit (PSSRU), at Kent University both on the characteristics of children in care and of foster families. The second applied the indicators of need identified by PSSRU's work to an authority level analysis of the extent and cost of provision.

(ii) The Assessment for the Elderly

2.3 Separate formulae were proposed for residential and non residential services. Client numbers for residential care were based on a formula using the very elderly, the less well off and people living alone as indicators of the need for residential care. A measure of the level of private provision was also included as an alternative indicator. Two cost bases were considered - a formula which took account of the reduced charges paid by income support claimants and one based on average unit costs. For non residential care, a formula was derived based on the characteristics of those in receipt of domiciliary services, using data from the General Household Survey. This included the

three indicators of need proposed for the assessment of client numbers in residential care plus numbers of elderly living in private rented accommodation.

(iii) The Other Social Services Assessment

2.4 Two options were presented for consideration. Firstly, as for the present GRE, a formula based on a regression of net expenditure per head against a composite indicator of social disadvantage; and secondly distribution based on the numbers of adults aged under 65 years in each authority but with an adjustment for need derived from the per capita needs assessment for children and the elderly.

(b) TOPICS CONSIDERED BY THE GROUP

2.5 The sub group met 7 times to discuss issues arising from these proposals, 26 papers were considered. The following points were raised.

(i) General Framework

2.6 The sub-group agreed with the proposed framework of three service blocks defined by client's age. The <u>ACC</u> felt that the distribution of need for mentally handicapped children would be more akin to need for services for mentally and physically handicapped adults and that these should therefore be included in the other services block. <u>DOE/DH</u> argued that it made less sense to include these services in a block whose primary indicator was numbers of people aged 18 to 64 years than one whose primary indicator was numbers of children.

- 2.7 The <u>Associations</u> supported a separate assessment in the children's block for expenditure other than that on residential and foster care; that is fieldwork, administration, nursery and other community services. They felt that different factors were relevant to the need for this expenditure. The <u>ALA</u> said that they would have preferred to have investigated options which treated fieldwork and nursery provision separately. The <u>ACC</u> agreed with the principle of a non residential/foster services assessment but were not convinced that distributing the assessment on the basis of predicted numbers of children in care would adequately reflect the need for preventive work. They felt that using predicted numbers weighted in favour of foster care would better reflect need for fieldwork services.
- 2.8 The <u>sub-group</u> agreed that need for residential and domiciliary services for the elderly should be assessed separately. The <u>ALA</u> said that they would have preferred domiciliary care to have been disaggregated into its main services, as with the present GRE. They argued that different factors were related to the need for home help, meals on wheels and day centre provision.

(ii) Use of Variable or Average Based Unit Costs

2.9 The ALA/AMA/LBA in general supported the use of variable unit cost adjustments based on regression analysis of the relationship between authorities actual unit costs and indicators of need. It was argued that research evidence showed that there was considerable variation in unit costs and that this variation was related to the background and personal characteristics of clients. The ACC were opposed to the use of authority level regression as they felt that this put too much weight on past expenditure patterns.

- 2.10 The <u>sub-group</u> agreed to the exemplification of average and variable unit costs in the children's services options. The variable cost adjustment was based on a composite indicator of social disadvantage for children. <u>DOE</u> propose to update the measure used in the present GRE incorporating the findings from the PSSRU children in care survey. It has not been possible to complete this work in the time available but it is likely that the distributional change caused by this development will be small.
- 2.11 The <u>sub-group</u> agreed to the exemplification of average and variable unit cost adjustment, for residential care for the elderly as described in the DOE/DH proposals.

(iii) Use of Authority Level or Individual Level Data

- 2.12 Data from surveys of the characteristics of individual clients were available to assist in the selection and weighting of indicators of need for both domiciliary services for the elderly and residential and foster care services for children. Options based both on regression analysis of these data and on regression analysis of authority level data were discussed.
- 2.13 The discussion of the elderly domiciliary care assessment centered on the adequacy of the formula developed from the analysis of information about a sample of individual elderly people living in private households provided by the General Household Survey. The ALA argued that the method of combining information on the separate services was flawed and that insufficient account was taken of ability to pay. The AMA produced a paper which showed that all the south coast authorities except Cornwall would have an assessment much higher than their reported level of spending. They argued that this was because such authorities had a high net inward migration of elderly, a high proportion of their population were elderly and

they had a higher percentage of elderly in private residential care. The ALA/AMA/LBA requested an option be considered based on a regression analysis of expenditure per elderly person on domiciliary services against the indicators identified by the GHS analysis plus an indicator of private provision. The ACC said that although they recognised the problem identified by the AMA paper, they could not support a solution based on an authority level regression and which resulted in a number of counties receiving an assessment much lower than their reported level of spending.

2.14 The <u>DOE/DH</u> proposals presented alternative options for assessing the number of children in need of residential and foster care. The <u>Associations</u> supported the use of the formulae developed by the PSSRU from analysis of their surveys of children in care and of foster families. <u>DOE</u> felt that an assessment based on separate regression analysis of the variation in numbers of children in care between authorities and of unit costs but without a direct foster care adjustment yielded a simpler formula. This is exemplified to illustrate the range of possibilities.

(iv) Other Points on Childrens' Assessment

- 2.15 The sub-group agreed on the following points.
 - a factor measuring the proportions of children in one parent households, rather than in single adult households should be used in the PSSRU numbers in care formula.
 - a minimum for the assessed percentage of children in care placed residentially in any authority should be set at 18%. This was based on professional advice from the Department of Health.

(v) Other Points on the Elderly Assessment

2.16 The <u>DH</u> developed an age weighted indicator for the population aged 65 years and over. Details were given in Annex D to paper PSS 20. Age weighting would make the formula more sensitive to future demographic changes. Initially it would produce little distributional change at an authority class level but was more important for some individual authorities, particularly those where a relatively high proportion of the elderly were aged 85 years and over. The <u>Associations</u> favoured age weighting. <u>DOE</u> pointed out that it increased complexity for a relatively small distributional effect.

2.17 A number of data related issues were discussed.

- it was agreed that a private provision indicator should be included in the residential client number formula.
- the use of data from the recent OPCS Disability Survey was considered. The survey did not have a sufficiently large size to allow a statistically valid analysis at a local authority level.
- DOE reported that the 1981 PSSRU survey of residential homes had only collected a very limited set of relevant information.
- no nationally representative and reliable data was available on the receipt of occupational pensions or the income tax status of elderly people.

(vi) Treatment of Other Social Services

2.18 The group discussed a list of factors which <u>DOE</u> proposed to consider for inclusion in a new, all ages indicator of social disadvantage. This new indicator, which it was proposed should also be used in the Other Services Block, was described in PSS 24. The regression based option was subsequently re-estimated. The <u>sub-group</u> agreed that this option should be exemplified.

(c) OPTIONS FOR CONSIDERATION

- 2.19 The following options have been selected for exemplification by the sub-group:-
- (i) <u>Children</u> No separate assessments for residential/foster and non-residential/foster services. Non residential foster spending is split between foster and residential care in proportion to actual numbers of places, except for fieldwork where double weight is given to the number of foster care places. PSSRU numbers in care and PSSRU foster care formulae used with average unit costs.

Elderly - Residential care assessment using an average unit cost adjustment; GHS based domiciliary care assessment.

Other - Regression based using the new composite social indicator.

Presentation supported by the ACC

(ii) Children - Separate assessments for residential/foster and non-residential/foster services. Numbers in care based on authority by authority regression; variable unit costs for residential/foster and non-residential/foster services. Elderly and Other as for (i).

(iii) Children - Separate assessments for residential/foster and non-residential/foster services. PSSRU numbers in care and PSSRU foster care formulae used. Variable unit cost for residential/foster services; average unit costs for nonresidential/foster services.

> Elderly - Residential care assessment using a variable unit cost adjustment; regression based domiciliary care assessment.

Other as for (i).

Presentation supported by ALA/AMA/LBA

(iv) Children - Separate assessments for residential/foster and non-residential/foster services. PSSRU numbers in care and PSSRU foster care formulae used. Variable unit costs for residential/foster and non-residential/foster both services.

Elderly and Other as for (iii).

Presentation supported by ALA/AMA/LBA

(III) POLICE

(a) DOE PROPOSAL

DOE proposed that the current GRE methodology be retained 3.1 for the needs assessment for Police. The needs assessment for the Metropolitan Police would be set equal to budgetted expenditure as approved by the Home Secretary; and the needs assessment for other police authorities would be based on police establishments as approved by the Home Secretary. For combined police authorities the needs assessment would be allocated between County Councils by reference to past shares of expenditure, and for Northumberland County Council there would be a special adjustment to reflect the arrangements for Northumbria Police Authority. The main issue for discussion was whether the measure of establishments should be police only, or whether there should be an adjustment for civilian staff. This had arisen in the course of discussion of 1989/90 GRES and an undertaking had been given that this would be looked at in the context of new needs assessments.

(b) TOPICS CONSIDERED BY THE GROUP

3.2 The sub-group met four times to discuss issues arising from this proposal, 11 papers were considered. The following general points were raised.

(i) The treatment of the Metropolitan Police

The ACC/AMA questioned the Metropolitan Police assessment being set equal to its budget and being the first call on the control total.

The <u>Home Office</u> provided a paper which suggested that there were good reasons for separate treatment of the Metropolitan Police. It was subject to additional spending pressures and its budget was scrutinised and approved by the Home Secretary. The budget is subject to

a cash limit, and in recent years the increase in the Met. Police's GRE from year to year had been less than the national increase in GRE. The <u>ALA/LBA</u> accepted reluctantly, that there was no alternative to the present arrangements.

(ii) The criteria used for the determination of police establishments

The ACC were not convinced that police establishments were determined on a consistent basis for all authorities and therefore were a suitable basis for needs assessments. The Home Office produced a paper which listed factors which Her Majesty's Inspectorate of Constabulary regard to in the consideration of applications for increases in establishments and on which their professional advice to Ministers was based. Associations also attended a presentation by HMIC on the matrix of indicators which provide a basis for comparing establishments.

(iii) Inclusion of Civilian Factors

- 3.3 The ACC considered that the use of police establishments alone would discriminate against authorities with relatively high levels of civilianisation and would be a disincentive to further civilianisation. Evidence was produced of the imbalance between authorities in the proportion of civil and police staff. The ACC put forward three options for including civilian numbers into the formula based on three definitions of civilian:
 - all civilians,
 - accountable civilians,
 - all civilians excluding those involved in certain commonly contracted out functions.

These were exemplified giving civilians a weighting of 0.48 (based

on relative employment costs in 1986/87). A further option was considered based on the number of civilians in key posts identified by HMIC.

3.4 The Home Office advised that increases in police establishments were not approved unless authorities were making

- 3.4 The <u>Home Office</u> advised that increases in police establishments were not approved unless authorities were making progress with civilianisation. Those authorities who were making greater use of civilians were more likely to be successful in bids for increases in police establishments. Levels of civilianisation would converge over time but there would always be some differences between authorities because of variation in circumstances. Comparisons of the proportions of civilians in key posts by force in 1987 and 1988 showed that, generally, those forces with the lower proportions of civilians in 1987 had the larger increases in 1988.
- 3.5 $\underline{\text{DOE}}$, the $\underline{\text{Home Office}}$ and the $\underline{\text{AMA}}$ opposed the inclusion of a civilian factor:
 - (i) because unlike police establishments, civilian numbers were not controlled by the Home Secretary. Civilian establishments were used as and indicator then authorities might increase their needs assessment by increasing civilian establishments but not employing up to these levels; and
 - (ii) because of the perverse incentive effect whereby any reduction in civilians employed either through greater productivity or the contracting out of services would result in a lower needs assessment.

These objections apart, the effects of including civilians were shown to be marginal at the class of authority level and mostly small for individual authorities.

3.6 The AMA were unhappy with the premise that efficiency was necessarily related to the numbers of civilians employed. Also, they were unclear whether the statistics included civilians employed by lead authorities as well as those working directly for the Chief Constables.

The AMAs view is that police establishment levels provide 3.7 the best indicator of need to spend, and that the process followed by HMIC adequately takes into account the required balance between police and civilian numbers in each force. In their view, no evidence had been produced so far to detract materially from this conclusion. (iv) Alternative model-based approach 3.8 The ACC would prefer a model-based approach rather than the use of establishments and investigated a unit cost model for the three main elements of police work on crime, traffic and public order along the lines of GRE methodology prior to 1987/88. However, this would require disaggregated expenditure data not currently available. The ACC requested that Home Office should collect appropriate expenditure data so that this could be followed up in the next review of needs assessment methodology. (c) OPTIONS FOR CONSIDERATION 3.9 The options for needs assessment for the police service selected by the sub-group are: (i) Metropolitan Police needs assessment based on budgetted expenditure as approved by the Home Secretary; needs assessment for other police forces distributed on police establishments. Supported by DOE/Home Office/ALA/AMA/LBA. (ii) Metropolitan Police needs assessment based on budgetted expenditure as approved by the Home Secretary, with needs assessment for other police forces distributed police establishments with an allowance for civilians in key posts. (iii) Metropolitan Police needs assessment based on budgetted expenditure as approved by the Home Secretary, with needs assessment for other police forces distributed on police establishments with an allowance for all civilians excluding those involved in commonly contracted out functions.

Supported by the ACC.

These options are exemplified in Annex B, Table 3.

- (IV) FIRE
- (a) DOE PROPOSALS
- 4.1. <u>DOE</u> identified three possibilities for simplification of the needs assessment for fire and civil defence. These included distributions based on single indicators (e.g. population, ward-weighted density, weighted fire-risk area and fire calls); a distribution based on fire service establishments; and a model-based approach using weights derived by regression analysis or based on judgement. It had been hoped that the revised fire risk area categorisation data collected by the Home Office would provide a firmer basis for the new needs assessment.
- (b) DISCUSSION OF PROPOSALS
- 4.2. The sub-group met four times to discuss these proposals and considered 16 papers. One of these papers concerned the inclusion of civil defence with fire for needs assessment.
- (i) Use of single indicators
- 4.3. <u>DOE</u> exemplified the sole use of each of the indicators used in the current GRE formulation. These produced extreme results with, for instance, that based only on area allocating over 90% of the total to shire counties and that based on ward-weighted density allocating about 60% to metropolitan areas. The sub-group agreed that no single indicator yielded a satisfactory needs assessment.

(ii) Use of establishments

- 4.4. The use of establishments was previously considered in the GRE sub-group in 1988 and was re-exemplified using establishments at 1 January 1988. This distributed overhead costs (15% of total) on total fireman and running costs on a 5:1 ratio of full time and retained staff based on available evidence on salary and staff costs. The sensitivity of these assumptions was tested using ratios of 3:1 and 7:1, and 1 January 1987 establishments.
- 4.5. Fire establishments are set by fire authorities and based on levels which they consider are needed to meet statutory requirements; the approval of the Home Secretary is only required to reduce establishment levels. An authority might therefore be able to influence directly a needs assessment based on establishment and the Home Office opposed the proposal on these grounds. The ACC also opposed the proposal because of the discretion on staffing numbers whereas the AMA recognised that the use of establishments produced more satisfactory results than any other single indicator. The sub-group recommends that the proposal to use establishments as a single indicator not be pursued.

(iii) Model-based approach with weights derived by regression analysis

4.6. <u>DOE</u> exemplified a number of models. Needs indicators tested included ward-weighted density; fire or total calls; and weighted risk area or total area with additional weight for higher risk categories. The weights on the fire risk areas were chosen to reflect the relative attendance times required within the different risk categories. Different models scaled expenditure and the independent variables by population, area or weighted risk area. Variants were also produced for many of these exemplifications using a different combination of calls, i.e.fire and false alarm, and fire and special service calls.

Establishments and certifiable premises (reflecting fire brigades' statutory duty to inspect) were additionally tested in regression analyses.

- 4.7. The AMA generally preferred the use of total calls because this reflected the demand on the service. The ACC, however, opposed the use of total calls because special calls can be charged for and alarm calls only generate additional costs at retained stations. The ALA/LBA considered that special calls should be included because of the need to attend, for example, road traffic accidents to prevent fire, and because it is not always practicable or humane to recover costs. The Home Office opposed the use of special calls because of their discretionary nature and the fact that related costs were recoverable.
- 4.8 Many of the models made use of the new fire risk categorisation. This is nearing completion and the figures used in exemplifications were provisional. The <u>ACC</u> considered that "special areas" (i.e. those which require a level of attendance generally higher than that of their surrounding area) should be included with category A for those exemplifications giving additional weight to higher risk areas. The <u>ACC</u> were concerned in that the new fire risk data might not be consistent between areas.
- 4.9 The AMA favoured an option distributing needs assessment in proportion to both population and mostly to fire and false alarm calls because of their preference for a high weight on calls. This was produced from a regression analysis including weighted fire risk area data which had been excluded as statistical grounds. The AMA were persuaded by the Home Office arguments against the use of special calls.
- 4.10 The ALA/LBA favoured two options: one distributing needs

assessment in proportion to population, ward-weighted density, weighted risk area and fire and special service calls; the other using total calls instead of fire and special calls.

(iv) Model based approach with judgemental weights

4.11. The <u>ACC</u> were unhappy with regressing indicators against past expenditure as they felt that this gave formulae which reflected past spending patterns and policy decisions rather than assessed need. The <u>ACC</u> therefore suggested that, in the absence of adequate data to support an objective weighted unit cost approach, a judgemental approach be adopted, based on the weights and indicators in the current GRE formula.

They were concerned with the additional weighting for fire calls and reduction for population produced by rolling forward the current GRE formula. The <u>ACC</u> therefore suggested that 48% of the needs assessment total be distributed in proportion to population, as in the 1989/90 GRE formula, and other indicators be reduced in proportion to their relative weightings in the reestimated formula.

The <u>ACC</u> suggested that two options be put forward for consideration by the NSWG; the first with "A" risk area alone, and the second with "A" and "special" risk area combined into a single indicator. It was proposed that only that using "A" and "special" risk area be exemplified.

(v) Alternative weighted unit cost approach

4.12. The ACC provided a paper on a disaggregated weighted unit cost approach. Further development of the proposal was dependent on the collection of information on manpower units on FDR forms. They suggested that it might be an

approach worth considering for the next review of methodology. It was recognised that the work would need to be put in hand shortly. (c) OPTIONS FOR CONSIDERATION 4.13. The options for needs assessment for fire and civil defence selected by the sub group are:-(i) Needs assessment for fire and civil defence to depend on ward-weighted density, weighted risk area and fire and special service calls scaled by population with weights determined by regression analysis; (ii) Needs assessment for fire and civil defence to depend on ward weighted density, weighted risk area and total calls scaled by population with weights determined by regression analysis. Both supported by the ALA/LBA (iii) Needs assessment for fire and civil defence to depend on fire and false alarms scaled by population with weights determined by regression analysis. Supported by the AMA.

(iv) Needs assessment for fire and civil defence to be based on present GRE formulation with judgemental weights and including "special" risk areas with risk category "A".

Supported by the ACC.

These four options are exemplified at Annex B, Table 4.

(V) HIGHWAY MAINTENANCE

(a) DOE PROPOSALS

- 100E proposed a simplified assessment of the basic form road length times usage, but which would recognise that costs are higher on principal than on non-principal roads and built-up than on non-built up roads, and that different types of traffic, as well as well as different levels of traffic flow, have different implications for maintenance costs. DOE proposed retaining an explicit allowance for winter maintenance in the new assessment since costs per km clearly vary with local weather factors and form a sizeable element in total maintenance costs (8% on the basis of 1989/90 GRE control totals).
- 5.2 The basic formula proposed was thus of the form:

(weighted road length) times (a + bX + cY + dW)

where

X = weighted traffic flow on principal roads above a threshold level; HGV flows would have a weight of 10 times all-vehicle flows.

Y = population per km above a threshold level; population would include 25% of daytime net inflow.

W = a winter weather factor.

5.3 DOE proposed weighting road lengths of different types in the following proportions:

Principal roads in built-up areas 6
Principal roads in non-built-up areas 3
Other roads in built-up areas 2
Other road in non-built-up areas 1

DOE proposed that two thirds of the usage-related part of the needs assessment should be distributed on the basis of traffic flows above a threshold level and one third on population per km above a threshold.

- (b) TOPICS CONSIDERED BY THE GROUP
- (i) Relative weights on different road types
- 5.4 The DOE proposal for a 3:1 relative cost weighting for principal and non-principal roads was based on DTp analysis of expenditure data from Maintenance Outturn Forms. The precise ratio round was 2.85:1. Different categorisations of expenditure were considered for the sub-group which might yield ratios as low as 2.5:1. But exemplifications demonstrated that such differences in the ratio would have little effect on the needs assessment.
- 5.5 The proposed 2:1 ratio between built-up and non-built-up roads was based on evidence for the sparsest counties provided by the ACC in the early 1980s. No comparable information for later years was available to the sub-group from <u>DOE</u> sources and the Associations did not offer any new or contradictory evidence. The <u>LBA</u> expressed concern that the proposed ratios were based on out of date data.
- 5.6 In the absence of a demonstrably better alternative, the Associations accepted the 6:3:2:1 weightings proposed by DOE.
- (ii) Usage Factor

(ii) Vehicle Flows

5.7 The sub-group discussed the use of traffic flows on principle roads as a proxy for flows on all roads. The ALA/LBA thought that flows on the 'designated road network' might be a

better measure as that included important non-principal roads, but DTp demonstrated that use of any road network other than principle roads would reduce the size of the network for which flows were taken. The AMA questioned the assumption that flows on other roads were proportional to flows on principle roads throughout the country. Evidence from national data indicated that the ratio was the same for built-up areas and non-built-up areas.

- and the difficulty of checking the data for individual authorities. DTp provided a paper describing the derivation of flow data and indicating that flows were, typically, very stable between years. But the AMA still had reservations. DTp established that factors allowing flows to be checked were available to interested practitioners, but that they were not routinely issued to all authorities because of difficulties of interpreting the data correctly.
- 5.9 There was considerable discussion of the appropriate extra weighting to be given to HGV flows within the flow measure. The 10:1 weighting proposed was based on the methodology used for allocating road track costs between classes of vehicle for taxation purposes. The ACC argued that the Audit Commission had recommended a switch of maintenance expenditure toward structural maintenance. There is currently no evidence of how such a switch might affect expenditure but illustrative calculations showed that, if the proportion spent on structural maintenance were to double, the weighting on HGV flows would increase to 17:1 instead of 10:1. The AMA argued that the level of the flow threshold should be reconsidered if the extra weighting on HGVs was changed.

(iii) Population measure

- 5.10 The <u>ACC</u> were not convinced of the merits of the arguments for the inclusion of daytime net inflow as a further population factor and suggested that in the interests of simplicity it should be excluded.
- The ACC argued that the population factor was included to give an indicator of the extra maintenance expenditure required in urban areas - the cost of more frequent traffic lights, pedestrian crossings and other safety measures, as well as the costs of street cleaning. They considered that calculating population per km on the basis of total road length was unfair to authorities with large lengths of road in rural areas where there was little need for this extra spending. DOE examined the effect of dividing population by built-up road lengths and breaking up the needs assessment formula to give a separate population element. they considered that, even if the ACC's case were to be accepted, this overstated costs in rural areas and made the assessment accepted, this overstated costs in rural areas and made assessment significantly more complex. The ACC subsequently asked DOE to look at the Census data for urban wards to see if a better measure of population per km (ie urban population per built-up km) could be derived. This was not possible in the time available but DOE agreed to investigate this further.
- 5.12 The ALA, LBA and AMA supported the treatment of population by DOE.

(iv) Relative weight on flow and population in usage factor

5.13 The two thirds to one third weighting proposed by DOE was not explicitly discussed by the sub-group, but in the absence of any conflicting evidence none of the <u>Associations</u> dissented from it.

(v) Thresholds/fixed element

- 5.14 The sub-group discussed how the usage thresholds were arrived at. DOE proposed setting them judgementally based on an examination of expenditure patterns for authorities with low flows and/or population per km. The fixed element in the formula would be set on the basis of the average expenditure for those authorities with usage below either or both of the thresholds. The AMA were unhappy with fixing the thresholds in this way. They argued that it was not logical to set the thresholds in a way which guaranteed some authorities spending below the theoretically minimum level. They considered that the thresholds suggested by DOE gave too large a fixed element in the formula. They proposed setting the fixed element judgementally, without reference to actual spending patterns. They advocated higher thresholds than proposed by DOE but with a lower fixed element.
- 5.15 Sensitivity of the needs assessment to different threshold/fixed element combinations was exemplified for the subgroup. These generally had little effect on the distribution of needs assessments.

(vi) Winter maintenance

- 5.16 The sub-group considered the relationship between winter maintenance expenditure per weighted km and several weather factors. All of the <u>Associations</u> agreed that the number of days with snow lying at 0900 hours should be used as the single winter weather variable. The <u>AMA</u> expressed some disquiet at the quality of the weather data. It was generally accepted that DOE had considered all presently available sources of data.
- 5.17 The sub-group also discussed the relationship between winter maintenance expenditure and usage. The ALA, LBA and AMA considered that there was a strong case for including a usage factor, constructed using both traffic flows and population per

km. The <u>ACC</u> argued that the main costs of snow clearing and gritting are related to road lengths, and that using weighted road lengths already reflected the road hierarchy.

5.18 The <u>ACC</u> suggested that a higher proportion of the control total should be assigned to winter maintenance (say 10% instead of 8%) to reflect the cost of remedial work necessary following frost/snow damage. This expenditure is at present treated in the same way as other structural maintenance, ie covered by the rest of the assessment.

(viii) Alternative approaches

5.19 The sub-group also looked at a number of judgemental and regression-based alternatives suggested by the Association but none of them found any support from any of the Associations.

(c) OPTIONS FOR CONSIDERATION

5.20 All of the <u>Associations</u> accepted the basic framework proposed by <u>DOE</u>. The following options are exemplified in Annex B Table 5:

- (i) The basic package proposed by DOE, with no usage factor in the winter maintenance element.
- (ii) As option 1 but with a weighting of 17:1 on HGV flows compared with all vehicle flows within the weighted traffic flow variable. <u>Inclusion supported by ACC.</u>
- (iii) As option 1 but with a lower fixed element, set judgementally. Inclusion supported by ALA, LBA and AMA.

(iv) As option 1 but with a usage factor for winter
 maintenance.
 Inclusion supported by ALA, LBA and AMA.

- (VI) OTHER SERVICES BLOCK
- (a) DOE PROPOSAL
- 6.1 The DoE proposal consists of grouping 33 services together into one block. These are listed in Annex A This is split into two sub-blocks; the first, block 'A', consists of services provided predominantly by Counties and the second, block 'B', of services provided predominantly by Districts in Shire areas. An element of the needs assessment calculated for each is re-assigned between blocks to take account of concurrent services A small element of the other services block total could be set aside to reflect the need to spend on revenue support for rail services within the Metropolitan areas. This could be distributed between areas using a formula along the lines of the present GRE; and within areas in proportion to adult population. Because of the inclusion of public transport revenue support in the block which does not apply within London, a proxy for expenditure on this service has to be allocated to the boroughs in order to determine appropriate weights within a regression. This proxy figure could be based on past spending by London Regional Transport. A corresponding element is then removed from each London borough's assessment as they do not incur expenditure on this service.
- 6.2 The needs assessments for each of the blocks are distributed using a number of indicators. These are similar to the factors currently used to distribute GRE for the services within the block. They include resident population, which has been adjusted by adding 25% of the daytime net inflow of commuters, to reflect a higher need to spend on some services where regional centres exist and ward-weighted density, to reflect the higher costs associated with the provision of services in urban areas. Measures of sparsity to reflect the additional cost of providing some services in very sparse areas, and a composite measure of social deprivation to reflect the higher need to spend on some services in socially deprived areas are also included in the proposal. The intention was to use

regression analysis of past expenditure to inform the weights to be applied to each of the indicators. The regression analysis is carried out separately for the two blocks and the results are combined in a single formula.

The Associations expressed great concern at the general framework for the other services block assessment. It aimed to reflect need to spend on a diverse range of services by the use of regression on a limited number of indicators against past expenditure, without regard to the needs of each individual service. This abandoned formulae for the individual services which had been developed over a number of years. In particular they were concerned about the inclusion in the regression of elements such as community charge collection costs, non- HRA housing and interest receipts, for which both the distribution and total within this block would be subject to change in the immediate future. A formula fixed for a number of years, they felt, would fail to allow for a changing balance between services which might have very different distributions. In addition they questioned the use of a single years' data (1986/87) to develop the formula. It was not clear how dependent such a formula would be on this factor.

(b) TOPICS CONSIDERED

The sub-group met 6 times and considered 24 papers. The following general points were raised

(i) Treatment of specific services

6.4 The Associations have expressed concern at the use of a single formula to distribute such a wide range of services. In particular, they have questioned the validity of including services where, in their view, there is little common coverage or local authorities have limited discretion in the scale of spending. These include coastal protection, pensions increase payments on public transport, probation and magistrates'courts,

passengers transport revenue support, waste disposal in London, statutory housing benefit costs and land drainage. The Associations proposed that separate assessments, either based on formulae or actual expenditure, be used for these services. DoE accept that land drainage and coastal protection have a narrower coverage than some services, but have pointed out that actual expenditure could only be incorporated with a lag, and the amounts involved are small. In the case of services such as statutory housing benefit costs, the inclusion of actual expenditure would remove the efficiency incentive. The government proposes that pensions increases should in future be met by pension funds. For the remaining services, DoE consider that authorities have sufficient influence over setting the level of expenditure to justify their inclusion.

The <u>ACC</u> have proposed that special treatment, based on actual expenditure, be given to National Parks residual expenditure.

The <u>ADC</u> have expressed concern at the inclusion in the regression analysis of some services for which the distribution of expenditure may be subject to change once the new system is underway, e.g. community charge collection costs, the borderline between HRA and non-HRA housing and interest receipts.

The <u>LBA</u> is additionally concerned that the London-wide Grants Scheme and the arrangements for concessionary fares in London are not adequately dealt with in the proposals.

Interest Receipts

6.5 The <u>ACC</u> and <u>ADC</u> have suggested that interest receipts should be the subject of a separate control total. They feel that both the scale of interest receipts and the reasons for their generation will alter significantly with the new system. In particular some receipts will accure to the Collection Fund and only that element allowed by the collecting authority to set against the costs of collection should be included in the assessment. Three methods were discussed for the treatment of interest receipts.

- that they should be included within the expenditure base used for the regressions within the OSB (as in the original DOE proposal).

- that they be identified as an element within the OSB and distributed in line with the remainder of the block.

None of the Associations support this.

- that they be distributed in line with needs assessments for all services. This would act as a measure of turnover.

The ADC supported this.

(ii) Concurrent Services

6.6 The <u>ACC</u> were concerned about the treatment of concurrent services within the DOE proposal. They suggested that as an alternative a proportion for each County area based on actual expenditure could be used as a basis for reassignment between tiers rather than a class average based on GRE shares. The <u>ACC</u> realised that this would have no effect on grant. <u>DOE</u> said that using actual expenditure shares (rather than GRE shares) would only have a small effect and that the use of individual authority figures county by county would only effect one or two authorities' needs assessments. The <u>ADC</u> suggested that it might be preferable to make no adjustment for reallocation between tiers.

The <u>LBA</u> expressed concern that the needs assessment for interest receipts relating to the LFCDA which was based on 1989/90 GREs was based on the false assumption that the LFCDA had inherited balances from the former GLC.

(iii) Grouping of services for analysis

6.7 The ADC proposed that services within the block be regrouped and analysed at a more disaggregated level. This was

intended to take account of the services identified by the <u>ACC</u> as being unsuitable for inclusion in a single formula and to provide a better basis for judging the appropriate weights to be applied to each indicator. Appreciation of expenditure patterns would also be easier if services were grouped on some functional basis for analysis, but this was not possible without having a larger number of service blocks. After further discussion of groups based on indicators, three groups of services were identified for each of the sub-blocks (see para.7.1): one to be distributed solely on population; one to be distributed on enhanced population (resident population plus a 25% weighting on daytime net inflow and 25% on visitor nights) and the third group to be distributed with weights derived from a regression analysis on past expenditure.

6.8 The <u>ACC</u> would have preferred to investigate further the expenditure patterns for individual services in this group. Within this approach land drainage, coast protection, interest receipts and public transport pensions were based on actual expenditure. A number of variants of this approach have been exemplified for the group.

(iv) The use of regression

6.9 A proposal for regression analysis of expenditure by class of authority arose from a technical discussion of regression. The ADC and the LBA were concerned that including all classes of authority in the regressions was masking variations in need to spend within classes where different indicators might be more appropriate. This approach has been exemplified and is supported by the ADC. The difficulty with such an approach is that a satisfactory methodology would have to be developed to derive class control totals. Also, regression within a small class of authorities is unlikely to reflect the full extent of variation. DoE have investigated and exemplified this third approach. In exemplifications the distribution of needs assessments from DoE's proposal has been used as a basis for the class control totals.

6.10 The AMA have with the support of all of the Associations, raised the issue of using past expenditure in regressions which is based on any single year, particularly 1986/87, which they feel is uncharacteristic since it is the first year after abolition of the Metropolitan Counties. DoE have undertaken to examine the 1987/88 outturn data if it becomes available in time. If using this later information has a significant effect on the regression results the weights applied to the indicators would be reviewed.

(v) Choice of indicators

Rural Areas

The DoE proposal includes a 5% allowance for sparsity. This is based on judgement because when sparsity was included as an indicator in the regression, the resulting weight was negative. The sub-group has discussed the appropriate weighting to be given to sparsity in the context of the OSB. The ADC suggested that the weighting might be informed by an analysis of predicted expenditure for similar levels of service from the 'ROSS' model, developed as part of the LAMSAC work for the Audit Commission. DoE were not convinced that the ADCs' proposals could be put into practice, in particular the use of ROSS standards of service, but the ADC were invited to pursue this approach but have not been able to take it further in the time available. The ADC produced a paper in consultation with the ACC which presented the general case for an allowance for sparsity. The AMA and LBA accepted that there was a case for some allowance but felt that 5% was too high, and suggested that the weight should be no higher than in GREs for these services (currently around 0.15%).

Urban Areas

6.12 The <u>DOE</u> proposal includes ward weighted density as an indicator of the increased cost of providing services associated with densely populated areas. DOE exemplified a number of

alternative measures of density including proportions in wards above particular density thresholds. The <u>ACC</u> and <u>ADC</u> felt that simple density was inadequate and that the discontinuity of a threshold measure was also inappropriate. The <u>Associations</u> generally supported the use of ward-weighted density for exemplifications but did not wish to close off other options. At the suggestion of the <u>ACC</u> the <u>DOE</u> considered an indicator based on the number of offences. This was found to be highly correlated with resident population and therefore unsuitable for inclusion in the regression.

Regional Centres

(a) Visitor Nights

- 6.13 The ACC and ADC have both requested that information on visitors be included when assessing the need for services for non-residents. The ACC and ADC feel that the scope for charging visitors is very limited and that for some services it is not possible. They maintain that the case for making an allowance for visitor nights is at least as strong as that for commuters. They feel that it is better to use imperfect data rather than make no allowance. Data on day visitors and on visitors from overseas is not available for local authority areas, a factor which, in the view of the AMA is particularly disadvantageous for certain London boroughs. Information is available on visitors staying overnight, and although this is recognised as having many limitations, the ACC and ADC request that it be included in the enhanced measure of population with a weight of 75% of the weight given to residents.
- 6.14 <u>DoE</u> do not consider the rationale for including an allowance for visitor nights is strong. As local authorities have the capacity to raise extra revenue from visitors through charging policy, it is difficult to identify what, if any, net costs are associated with visitors. Additionally, the data used in GREs is from the 1970s and therefore very out of date. More

recent data covering the years 1980 to 1984 has been found to be unstable from year to year and unreliable for authorities with low values.

(b) Inflows of Commuters

- 6.15 The <u>DoE</u> proposal includes an allowance of 25% for net inflows of commuters into an authority to reflect a higher demand for services within regional centres. The 25% weight is judgemental since the weight produced by the regression was implausibly high in relation to resident population. The <u>AMA</u> proposed that gross inflows into an area be considered. Exemplifications were produced but the Associations did not wish to pursue this option.
- 6.16 The ACC and ADC believe that the weight for daytime net inflow should be less than 25%. They suggest that the weight should be found by considering the reduction in the need for services in areas where there is a net-outflow of commuters during the day. They point to the present GRE for recreation where the degree of participation transferred by commuters from the area of residence to the area of workplace is only 10%.

Deprived Areas

6.17 During the course of discussions <u>DoE</u> have reviewed the current measure of social deprivation and constructed and exemplified the effect of a revised composite indicator based on a sub-set of the indicators used in the social list for GREs. The <u>ADC</u> questioned the statistical validity of using ward weighted density as a separate variable rather than incorporating it in the composite social indicator. <u>DOE</u> said they felt that density was not an indicator of social deprivation and as such had a separate contribution to make to the regression. They agreed to look into this further.

6.18 The AMA do not think the social indicator adequately reflects economic deprivation. They proposed that a composite measure comprising unemployment and the proportion of people without access to a car be considered, since these indicators appear in current GREs for some of the key services to be included in this block. This has been exemplified within the DOE and Association approaches. The ACC and ADC have questioned the use of car ownership as an indicator of economic deprivation since in rural areas cars may be considered to be a necessary form of transport where suitable public transport is unavailable. The ADC questioned the statistical validity of creating a second composite indicator from the pool of variables under consideration. They also suggested that there may be additional variables which could be included within a composite economic indicator e.g. proportion of pensioners. DOE agreed to undertake a similar exercise with respect to the creation of a composite economic indicator, to that which had already been undertaken for the social indicator.

Summary of Views of the Associations

- 6.19 The AMA is unable to support any of the specific options exemplified here. It believes that there is no evidence to suggest that the options exemplified at this stage are no less fair than the current GREs. The Government's overiding requirement to simplify means that any formula adopted is unlikely to be capable of reflecting adequately the complexity of differences between authorities in need to spend on this wide variety of services.
- 6.20 The <u>ACC</u> prefers the disaggregated approach to developing a formula, which analyses services in smaller groups, but feels that the particular option shown still places too much reliance on regression against past expenditure.

6.21 The LBA is totally opposed to all three main options in this report, for the reasons set out in paragraph 6.3. The LBA feels that the results are implausible. In the LBA's view simplicity is being achieved at the expense of the objective of reflecting needs no less fairly than the present GREs. Indeed 14 outer-London boroughs lose between £55m and £68m under the three main options, equivalent to a community charge per adult of between £23 and £28. In some authorities the losses at community charge payer level are even greater. The LBA suggested an alternative method of simplifying this needs assessment, based on current GREs. This produces similar results by authority to the existing pattern. The LBA proposes therefore that this needs assessment should be based on current GREs.

(c) OPTIONS

In the course of discussion within the sub-group three main approaches have emerged. The options exemplified are illustrative variants of these - there are many possible alternatives within each approach.

(i) DoE option

as described above under (a). This variant (a) approach consists of the block of services split into 2 subblocks to reflect the division of services within shire areas. Needs assessments for each block are assessed by means of a regression to inform the weights applied to the following indicators: population + 25% daytime net inflow, ward-weighted density, and a composite indicator of social deprivation. An indicator of sparsity is given a 5% weight.

ALA support this option.

(ii) DoE option as (i) but with the inclusion of an variant (b) indicator of economic conditions. Inclusion supported by AMA. (iii) Multi-block this approach is described in para 7.4. analysis It consists of splitting the OSB needs assessment into a number of smaller option blocks, (about 6) each of which is distributed in a different way. ADC support this option. ACC support this approach. this approach is described in para 7.5. (iv) Class-based approach Weights are derived for a small group of indicators by means of a regression analysis of expenditure on services within each class of authority. This approach needs to be combined with a methodology for distributing the total needs assessment between classes of authority. ADC supports this approach. ALA opposes this approach. 6.22 The ADC * supports the proposal to acknowledge additional cost of service delivery associated with sparsity: * requires a fair balance to be struck in recognising the costs of services provided for non-residents - both visitors and commuters - relative to residents:

- * prefers more disaggregated approaches; in particular treating land drainage and interest receipts separately, and restricting the pooling of services where weights on indicators are determined by regression:
- * calls for a further examination of the economic list; to extend the range of indicators incorporated; and to assess whether any part of the weight reflects variation in local authority policies, rather than differences in spending needed to provide a common standard of service:
- * calls also for consideration of the elderly, either as a component in the economic list or as an additional indicator, separately weighted.

The <u>ADC</u> were concerned at the sensitivity of the figures for individual authorities to the particular formulation of the options. The Association believes that these results are frequently implausible. It regrets the dependency on regression analysis as the method of setting the weights on indicators in the formula.

(VII) AREA COST ADJUSTMENT

(a) DOE PROPOSALS

- 7.1 The new needs assessment and grant systems are intended to compensate authorities for non-discretionary differences in the costs of providing a standard level of service. They seek to allow authorities to provide a common level of service while chargepayers face a common community charge (the community charge for spending at need). The DOE proposals for simplified needs assessments have been worked up using the allowances made for inter-area cost differences in existing GREs. These explicitly recognise higher rates of pay in London and surrounding areas as a source of non-discretionary variation in costs. Alongside the simplification of service needs assessments, DOE proposed re-examining the types of costs covered and the geographical area to which an adjustment is made.
- 7.2 The ACC and ADC raised the question of why there might be a need for an area cost adjustment. DOE explained that the purpose of such an adjustment is to enable authorities to provide a standard level of service without placing any greater burden on local chargepayers as a result of differences in unit input costs. The ALA and LBA consider such an adjustment to be essential in order to preserve accountability in the new system.
- 7.3 The present area cost adjustment for a service is an estimate of the proportionate addition to costs for that service resulting from cost differences between London and surrounding areas and the rest of the country. For individual services the area cost adjustment is calculated as a percentage of the labour cost adjustment, the percentage depending on the estimated share of labour costs both direct and indirect in total costs for the service. Labour cost shares vary between about 60% for highway maintenance and 85% for police and fire. In broad terms the labour cost adjustment factor measures the ratio between average earnings in each part of the London Weighting Area and

the rest of the country based on New Earnings Survey (NES) data. The adjustment for Education is at present based mainly on actual London Weighting payments. <u>DOE</u> suggested that there might be a case for dropping the separate adjustment for teachers' salaries.

(b) TOPICS CONSIDERED BY THE GROUP

The sub-group met 4 times and 11 papers were considered. The following points were raised.

(i) Non-labour costs

- 7.4 Allowance for non-labour costs, such as rent and rates, has not been made in the past because of the lack of coherent evidence on the extent to which authorities in different areas face different costs for these inputs. The sub-group examined information for a sample of areas on rent and rates costs per square metre for office accommodation. This showed that the cost of rent and rates per square metre in London is several times that elsewhere in England. But a unit cost adjustment would be relatively small since rent and rates form only about 3% of local authority costs nationally. Much more comprehensive information on variations in accommodation costs is expected to become available from Inland Revenue following this years revaluation. In DOE's view there is, at present, no comprehensive set of data similar to that used for the labour cost adjustment upon which rent and rates adjustment could be based. The ALA, LBA and AMA believed that it is essential to keep the issue of relative accommodation costs under review.
- 7.5 The ALA, LBA and AMA supported making a judgemental adjustment to reflect the perceived non-labour costs in and around London. The ALA and the LBA propose that, given the difficulties of accurately assessing the differences in non-labour costs, the labour costs adjustment should be applied to the whole of local authority expenditure. The ACC and ADC did not accept the need for such an adjustment.

- 7.6 The sub-group considered a variety of evidence on the variation in levels of non-wage costs around the country. The evidence is largely anecdotal and is not available on a sufficiently widespread basis or in a sufficiently robust form to be used to develop a detailed measure of cost variations. It is a matter for judgement whether non-wage labour costs are higher in London than in other parts of the country and whether the existing methodology makes sufficient allowance to cover any such non-wage costs. The ALA and LBA suggest that all of the anecdotal evidence available points in the same direction. They therefore propose a judgmental weighting of 5 percentage points for inner and outer London to take account of non-wage-labour costs.
- 7.7 The ADC accepted that the evidence on non-wage labour costs was hard to quantify in a suitable form to include in a cost adjustment. The ACC and ADC were concerned that the London case was being overstated since they felt many authorities were experiencing similar problems. There was no clear evidence that the differential on non-wage labour costs was higher than on labour costs. It was already allowed for in the way the labour share in total costs was calculated. The AMA thought that this was one of several areas where more data needed to be collected.

(iii) Geographical coverage

7.8 The sub-group considered NES data on hourly earnings by standard region which suggest that, whilst there are differences in labour costs between regions, they are rarely common across all occupational groups. The only clear regional trends are that Greater London is a very high cost area for all occupational groups and that earnings in the (rest of) the South East are generally well above those in other regions. There are also large variations within regions. The intra-regional differences are, in fact, greater than inter-regional differences outside London. It appears, therefore, that a regional cost index would not in

practice identify systematic, unavoidable cost differences between authorities. The sub-group agreed that a regional cost adjustment should not be developed.

- 7.9 <u>DOE</u> exemplified for the sub-group an extension of the present methodology to give districts and counties in the South East but outside the London Weighting Area an adjustment. Columns 2 and 3 of Table 7 in Annex B show the effect on the labour cost adjustment factor of such a change. Columns 5 and 6 show the effect of a different weighting between inner fringe, outer fringe and other South East districts. To be able to extend the area covered new authority weights are needed in order to construct an average wage rate for the authorities in the South East. Population weightings have been considered as an alternative to paybill weightings as used at present. This was not supported by the <u>ALA</u>. Columns 1 and 2 of Table 7 show the effect on the adjustment factor. The <u>ALA</u> support weights constructed with reference to previous GRE weights.
- 7.10 The <u>ADC</u> felt that the use of population weights was a legitimate simplification and produced a tolerable distribution. But, like the other Associations, in principle they would prefer weighting by shares of needs assessments. These would, however, need to be re-calculated to exclude the present cost adjustment. It was not clear how these calculations should be performed.
- 7.11 The ADC agreed with the extension of the adjustment to the whole of the South East. They felt it would be difficult to justify weightings which produce a higher cost adjustment factor for inner fringe districts than for outer London boroughs. The ACC and ADC thought that weightings of 1.5, 1.0 and 0.5 between inner fringe, outer fringe and other South East districts were plausible. The ALA and AMA do not support an extension of the cost adjustment to the whole of the South East. The LBA feel that the evidence supporting extension is weaker than the evidence in favour of applying the cost adjustment to non-labour costs and non-wage labour costs.

7.12 The ALA suggested that there was little justification for retaining a separate adjustment for the City of London. Given its very small geographical size, they questioned whether the City should be considered as a distinct local labour market. DOE pointed out that the NES data, on which the adjustment is currently based, indicate that there is a significant difference between average earnings in the City of London and the rest of Inner London. The effect of integrating the City would be, broadly, to reduce the City's adjustment factor to that of the Inner boroughs. There would be little upward movement in the adjustment applied to the Inner boroughs, if population weights were applied; but the effect would be greater with alternative weights.

(iv) Occupational weights and including teachers

- 7.13 <u>DOE</u> exemplified the effect of using an alternative set of occupational weightings, based on NES sample shares instead of shares based on local authority employment. Using NES shares would identify a typical labour market as faced by all employers. The effect of using NES weightings instead of CEC occupational weightings is shown in Columns 3 and 4 of Table 7. <u>DOE</u> suggested that, if NES occupational weights were used, it would be straightforward to extend the NES-based labour cost adjustment to include teachers, for whom an adjustment based on actual London Weighting payments is used at present.
- 7.14 The Associations were all concerned that moving from CEC weights to NES weights would involve a move away from weights based on the structure of local authority employment. The <u>ALA</u> and <u>LBA</u> thought that including teachers would be a useful simplification and could see merit in using NES weights if that was the only way to do this without having unacceptable effects on the cost adjustment for other services.

- 7.15 NES data becomes available in about the October following the April survey, ie in October 1989 for the survey undertaken in April 1989. This means that the last survey data that can be used for 1990/91 needs assessments are likely to be those from the 1988 survey. Columns 4 and 5 of Table 7 show the effect of using NES data for 1987 instead of data for both 1986 and 1987 (as used at present). Using one year's data would make full use of the latest available data. It would also mean that any changes in trends would be incorporated more quickly, without the smoothing effect of combining two year's data.
- 7.16 The <u>ACC</u>, <u>LBA</u> and <u>AMA</u> supported using the most recent data available, for one year only. The <u>ALA</u> supports the continuation of the present system of using an average of two years' NES data.

(vi) An island cost adjustment

- 7.17 Provision has in the past been made, through a special costs indicator in the GRE formula, for the unique circumstances of the Council of the Isles of Scilly because of the very small population of the islands and their considerable remoteness from the mainland and centres of commercial activity. <u>DOE</u> proposed that similar provision should continue to be made within the new needs assessments but with some modification to reflect the inclusion of refuse collection and refuse disposal in the other services block.
- 7.18 The sub-group considered a joint paper from the local authorities on the Isle of Wight in which they sought treatment similar to that presently given to the Isles of Scilly. The ACC and ADC were not in favour of giving special treatment to the Isle of Wight. They did not think that it faced problems of remoteness which were significantly different from some other authorities. The ALA and LBA would support special treatment for the Isle of Wight of additional non-labour costs which were taken into account for London.

(c) OPTIONS FOR CONSIDERATION The sub-group's consideration of area cost adjustment has produced the following list of outstanding issues: (i) Whether to make a judgemental allowance for non-labour costs. ALA, LBA and AMA support making an allowance; ACC and ADC oppose. (ii) Whether to use population or needs assessments instead of paybills in the weighting for each area. All Associations prefer needs assessments; The ACC and ADC would not oppose using population. (iii) Whether to extend the area covered by the adjustment to the whole of the South East Region and, if so, the weights to apply within that Region. ADC support extension to whole South East. ACC and ADC think weights of 1.5, 1.0 and 0.5 are plausible. ALA and AMA oppose extension. (iv) Whether to use NES-based occupational weights instead of 1982 CEC occupational weights. ALA and LBA accepts the use of NES weights if teachers are included. (V) Whether the labour cost adjustment should continue to be calculated using data from the NES for two years or just for one. ACC, LBA and AMA support using just one year's data. ALA supports the continuation of a two year average.

(vi) Whether to include teachers in the general labour cost adjustment.

 $\underline{\text{ALA}}$ and $\underline{\text{LBA}}$ support the extension of the NES based formula to teachers.

(vii) Whether to make an Islands Cost Adjustment, and if so how and for which areas.

ACC and ADC oppose; no support from other Associations.

(VIII) CAPITAL FINANCING

(a) DOE PROPOSALS

- 8.1. <u>DoE</u> proposed that a single capital financing needs assessment should cover the costs of financing both new and past capital expenditure. A copy of the original proposal on capital financing has been sent to all members of the New System Working Group for information as it was not amongst the papers distributed in December. The needs assessment would cover all services and include financing costs presently incorporated within service GREs.
- 8.2. DoE proposed that the assessment for each local authority should be built up from an allowance representing pre 1990 capital expenditure (based either on past GREs for capital financing or outstanding debt), to which would be added amounts representing new credit arrangements and from which would be deducted amounts for capital receipts set aside to redeem credit and an amount for existing specific grants paid in support of capital expenditure which are to be commuted. The national average rate of interest and a standard proportion of principal to be repaid under the reducing balance method would then be applied to this sum to derive financing costs. Alternatively, the financing costs of pre-1990 capital expenditure might distributed in proportion to service needs assessments. intended to make an allowance for capital expenditure financed directly by revenue in needs assessments distributed in relation to either service needs assessments or capital financing needs assessments.

(b) DISCUSSION OF PROPOSALS

- 8.3. The sub-group met three times to discuss the proposals for capital financing and considered 5 papers.
- 8.4. Discussion concentrated on the method by which the allowance for pre-1990 capital expenditure would be assessed. There was also discussion of how the control total for the

capital financing needs assessment would be derived; of proposals for the treatment of receipts set aside to redeem credit; on the needs assessments for revenue contributions to capital outlay and of the proposals for the treatment of future capital expenditure.

(i) The allowance for pre-1990 capital expenditure

- 8.5. DoE put forward three methods by which the allowance for pre-1990 capital expenditure for each local authority could be assessed. This allowance would form the basic building block of the new needs assessments, to which amounts would be added and subtracted in future years. The methods were:
 - (a) to base the allowance on the actual financing costs allowed for in all 1989/90 GREs;
 - (b) to base the allowance on the sum of capital allocations between 1981 and 1990 used in the GRE for financing of new capital expenditure (indicator E9);
 - (c) to base the allowance on actual outstanding debt at March 1987 and incurred under past capital control arrangements.

A fourth possibility was:

(d) to base the distribution of financing costs on the new service needs assessments for current expenditure.

The first three options were exemplified for the sub-group; the fourth cannot be exemplified until the new needs assessments are finalised.

8.6. An allowance based on options (a) or (b) would take account of past assessments of local authorities' needs for capital financing. The <u>ALA</u> and <u>ADC</u> were not in favour of the use of capital allocations as in method (b), since these allocations did not reflect authorities' need to spend on all rate fund services. The <u>LBA</u>, <u>ACC</u> and <u>ADC</u> favoured method (a), since it took account of debt charges presumed to have arisen on all services in all years in appropriate proportions. It also had the

advantage of consistency with the present system. The $\overline{\text{ALA}}$ were not in favour of method (a) as it perpetuated a set of GREs which they do not consider represent need.

- 8.7. Method (c), which bases the distribution of outstanding debt on actual outstanding debt figures for an earlier year would write off past variations in financing practices. For this reason the <u>ACC</u> and the <u>LBA</u> were not in favour of this option. The <u>LBA</u> argued that using this option would reduce the incentives for local authorities to follow good accounting practices in line with government proposals. The <u>ALA</u> favoured this option.
- 8.8. The ACC, ADC, AMA and LBA did not support method (d) in which the capital financing needs assessment would be distributed. in line with current expenditure needs assessments, since in their view the need for capital expenditure is not closely related to the need for current expenditure.
- 8.9. The AMA found the case for option (b) particularly weak but did not at this stage wish to express a preference for method (a) or method (c).

(ii) New capital expenditure

8.10. DoE proposed that allowance in the assessment for the financing of new capital expenditure, to be added to the allowance for pre-1990 capital expenditure, should be based on credit approvals or annual capital guidelines (ACGs). Information on credit approvals for a year (particularly supplementary credit approvals might not be complete at the time of a settlement, but would be updated for subsequent settlements as information became available. The difference between the two approaches is an element for capital receipts taken into account. ACGs would be an indicator closely related to relative need for capital expenditure while credit approvals would be an indicator directly related to an authority's entitlement to borrow. The ACC, ALA, and AMA are in favour of using credit approvals because they consider that these better represent the need for capital

financing. The <u>LBA</u> support the use of ACGs which represent the need for capital expenditure. The <u>ADC</u> do not wish to see either credit approvals or ACGs dropped from discussion at this stage.

(iii) Receipts set aside to redeem credit

- 8.11. The aggregate needs assessment for capital financing will take account of the reduction in financing costs resulting from the requirement to set receipts aside to redeem credit. DOE proposed that in order to give an incentive to dispose of surplus assets while taking account of different capacities to generate receipts, the equivalent adjustment for individual authorities should fall between:
 - taking no account of capital receipt for the individual authority but scaling down all assessments of financing costs;
 - adjusting the needs assessments of the authorities which have the capital receipts.
- 8.12. The AMA and ALA felt that the effects on incentives were not significant. They thought that there was no need for an intermediate approach. In their view, adjusting the needs assessments of individual authorities which have the capital receipts would fully reflect the effect of receipts set aside on need for capital financing. The LBA consider that individual authorities would receive no benefit for efficient asset management under this approach and therefore would support an approach which gave individual authorities a substantial incentive to manage their assets efficiently.

(iv) Revenue Contributions to Capital Outlay

8.13. Needs assessments will retain an element for RCCO to maintain a comparable similar level of assessed need for capital financing as in GREs. But in future, local authorities will have freedom to make RCCOs and there will be no further allowance in needs assessments to reflect the actual levels of RCCO chosen. DOE proposed that the allowance for RCCOs could be distributed either in proportion to some element of the capital needs

assessments or in proportion to needs assessments for current expenditure. The <u>Associations</u> thought that this should be kept within the capital needs assessment and distributed in proportion to ACGs.

8.14. No alternative options for calculating the capital financing needs assessment have been put forward by the local authority associations. The Associations have asked for a further meeting when the details of the New Capital Control System are finalised.

(c) OPTIONS FOR CONSIDERATION

- 8.15. The following options for distributing capital financing costs up to 31 March 1990 are exemplified in Appendix A, Annex (IX). It is not possible at this stage to illustrate the affects of different approaches to financing costs of post-1990 capital expenditure nor of receipts set aside.
 - (i) distribution based on 1989/90 GRE for debt charges;

ACC, LBA and ADC supported this option.

(ii) distribution based on capital allocations between 1981 and 1990;

<u>LBA</u> and <u>ACC</u> were not opposed to this option, although they preferred option (i). The ADC opposed.

(iii) distribution based on outstanding debt.

<u>ALA</u> supported this option. ACC oppose this option.

CONCLUSION The sub-group invites the New Systems Group/Systems Working Group to consider the options for individual service/service blocks put forward by the sub group with a view to selecting illustrative packages. These will then form the basis of exemplifications of the New Grant System for CCLGF. FLGR/DOE MAY 1989

SIMPLIFIED NEEDS ASSESSMENTS BY SERVICE FOR 1989/90

		(£m)
Education (incl. careers)		13,454
Personal Social Services:		
- Child - Elder - Other	ly	1,152 1,421 642
total	PSS	3,215
Police		1,880
Fire and Civil Defence		769
Highway Maintenance		1,468
*Other Services		4,303
Capital		2,087
TOTAL		27,176

* listed overleaf

NOTE: The total 1989/90 needs assessment of £27,176m is derived as follows:

	1989/90 GRE	£27,662m
less		
	RFRACs to HRA	£348m
	ILEA museums	£3m
	Mandatory student awards	£80m
	No area pool	£55m

SETTICES WITHIN THE OTHER SERVICES BLOCK WITH 1989/90 CONTROL TOTALS

	(£m)
Registration of births Coroners courts Sheltered employment Libraries Consumer protection Refuse disposal Bus revenue support School crossing patrols Probation Magistrates courts Land drainage Section 20 rail support	29.5 21.3 14.3 437.6 81.3 260.3 155.3 23.3 46.9 39.0 152.0 81.0
Total for block A	1341.8
Cemeteries and crematoria Registration of electors Allotments and proce Environmental/health Planning control Parking Planning implementation Museums and galleries Building regulations Recreation Refuse collection Other services Concessionary fares Housing benefit Economic development Rate collection Community charge preparation costs Private housing Public transport pensions Coast protection Interest receipts	49.3 30.3 4.9 455.6 -76.7 40.6 68.3 556.7 482.7 442.1 296.9 271.5 73.4 207.9 176.6 33.6.9 -825.0
Total for block B	2961.6
Total for Other Services Block	4303.4

CCLGF(89)(2) Addendum

The attached paper on needs assessments for the other services block was produced by the LBA too late for discussion at the needs assessment sub-group. They have asked that the paper should go forward to CCLGF. The other Associations wish to make it clear that the paper has not been subject to the same scrutiny as other proposals.

NEW SYSTEMS GROUP - 9TH JUNE 1989

PAPER BY THE LONDON BOROUGHS ASSOCIATION

NEEDS ASSESSMENTS - OTHER SERVICES BLOCK

The London Boroughs Association has already indicated its dissatisfaction with the proposals for the other services block. Consequently the LBA has been examining an alternative based on a simplified method of distributing existing GREs. The results are attached.

The approach would:

1. meet the objective of simplicity,
2. be stable from year to year,

be much fairer across classes of authority,

any of the existing proposals.

be no less fair at individual authority level than

Method of Distribution

County Distribution Block Control Total £1,237.4m	A	District Distribution Blo Control Total £3,336.5m	ock B
Resident Population	45%	Resident Population	37%
Daytime Population	30%	Daytime Population	19%
Ward Weighted Density	23%	Ward Weighted Density	27%
Unemployment	2%	Unemployment	9%
		Persons in private rente	d
		accommodation	5%
		Visitor Nights	3%
Social Deprivation Factor		Social Deprivation Facto	r
redistributes	2.5%		6%

Other - Land Drainage - Control Total £152m - Actuals

Passenger Transport £236.3m Existing GREs

Pensions Increase £33.6m Existing GREs

Interest Receipts £-825m Existing GREs

Area Cost Adjustment £132.6m

	OSB Needs Assessmen	GRE	Variation
LFCDA Oth Fir/Pol Met Police	-8.687 -14.106 14.289	-14.106	0.000
I/London O/London Mets Shires Scillies Districts	1204.431 604.397 0.059	445.681 522.264 1204.503 604.089 0.231 1534.911	-3.819 4.004 -0.072 0.308 -0.172 -0.029
London Mets Shires	973.733 1190.325 2139.338	973.547 1190.397 2139.231	0.186 -0.072 0.107
Total	4303.396	4303.175	0.221

OSB Existing Variation Needs GRE Assessment

City	12.152	16.836	-4.684
Camden	36.546	38.860	-2.314
Greenwich	23.227	25.597	-2.370
Hackney	36.564	33.659	2.905
H & F	33.159	30.244	2.915
Islington	33.220	33.408	-0.188
K & C	32.199	29.116	3.083
Lambeth	46.799	42.868	3.931
Lewisham	30.665	32.538	-1.873
Southwark	35.926	36.714	-0.788
T/Hamlets	23.260	27.236	-3.976
Wandsworth	43.806	40.869	2.937
Westminster	54.338	57.737	-3.399
Barking	16.751	18.092	-1.341
Barnet	31.762	33.559	-1.797
Bexley	19.836	21.638	-1.802
Brent	43.738	37.907	5.831
Bromley	24.507	28.253	-3.746
Croydon	37.529	37.350	0.179
Ealing	43.186	39.200	3.986
Enfield	28.352	28.444	-0.092
Haringey	35.465	31.304	4.161
Harrow	20.998	21.217	-0.219
Havering	18.682	21.445	-2.763
Hillingdon	20.517	22.913	-2.396
Hounslow	22.570	23.352	-0.782
Kingston	14.158	15.012	-0.854
Merton	19.446	19.486	-0.040
Newham	38.828	32.905	5.923
Redbridge	25.089	25.514	-0.425
Richmond	17.045	18.161	-1.116
Sutton	16.513	17.622	-1.109
W/Forest	31.297	28.887	2.410

OSB Existing Variation Needs GRE Assessment

Bolton	27.162	27.077	0.085
Bury	15.414	16.481	-1.067
Manchester	65.245	64.909	0.336
Oldham	23.212	22.828	0.384
Rochdale	19.907	20.470	-0.563
Salford	27.463	27.178	0.285
Stockport	27.692	28.523	-0.831
Tameside	21.171	21.776	-0.605
Trafford	22.914	22.638	0.276
Wigan	26.812	28.959	-2.147
Knowsley	19.964	19.092	0.872
Liverpool	74.403	70.602	3.801
St Helens	19.116	19.760	-0.644
Sefton	32.181	32.568	-0.387
Wirrall	36.109	37.542	-1.433
Barnsley	17.620	19.112	-1.492
Doncaster	23.643	25.349	-1.706
Rotherham	19.790	21.199	-1.409
Sheffield	56.429	55.862	0.567
Gateshead	21.636	22.300	-0.664
Newcastle	34.274	36.349	-2.075
N. Tyneside	19.498	20.749	-1.251
S/Tyneside	17.680	17.669	0.011
Sunderland	30.409	31.701	-1.292
Birmingham	134.171	123.352	10.819
Coventry	37.612	35.853	1.759
Dudley	28.446	30.160	-1.714
Sandwell	37.126	35.181	1.945
Solihull	19.016	18.996	0.020
Walsall	27.182	27.405	-0.223
Wlvrhmpton	32.493	30.442	2.051
Bradford	48.313	45.814	2.499
Calderdale	16.004	17.338	-1.334
Kirklees	32.617	33.623	-1.006
Leeds	67.416	68.469	-1.053
Wakefield	24.288	27.176	-2.888

OSB Existing Variation Needs GRE Assessment

Avon	23.525	21.179	2.346
Bedford	11.639	12.276	-0.637
Berkshire	16.001	14.218	1.783
Buckingham	11.139	11.755	-0.616
Cambridge	11.892	13.281	-1.389
Cheshire	19.131	19.530	-0.399
Cleveland	13.997	13.013	0.984
Cornwall	6.769	7.971	-1.202
Cumbria	8.812	9.100	-0.288
Derbyshire	17.540	19.616	-2.076
Devon	20.870	19.959	0.911
Dorset	12.930	12.741	0.189
Durham	11.283	11.933	-0.650
E/Sussex	17.821	15.495	2.326
Essex	35.672	34.226	1.446
Gloucester	9.532	9.600	-0.068
Hampshire	32.614	29.865	2.749
Hereford	11.677	12.107	-0.430
Hertford	20.868	19.291	1.577
Humberside	17.629	18.340	-0.711
I of W	2.143	2.987	-0.844
Kent	33.578	31.472	2.106
Lancashire	31.098	29.946	1.152
Leicester	18.646	18.167	0.479
Lincoln	10.184	11.838	-1.654
Norfolk	14.023	15.710	-1.687
Northampton	10.861	10.265	0.596
Nrthmbrland	5.062	5.588	-0.526
N/Yorkshire	12.262	13.339	-1.077
Nottingham	22.438	23.538	-1.100
Oxford	11.051	11.271	-0.220
Shropshire	6.569	7.149	-0.580
Somerset	8.498	9.403	-0.905
Stafford	20.631	20.147	0.484
Suffolk	12.575	12.648	-0.073
Surrey	20.390	22.224	-1.834
Warwick	8.651	9.060	-0.409
W/Sussex	14.712	13.984	0.728
Wiltshire	9.682	9.856	-0.174
I of S	0.059	0.231	-0.172

Bath	5.400	5.970	-0.570
Bristol	30.305	28.761	1.544
		4.240	0.560
Kingswood	4.800		
Northavon	5.342	5.110	0.232
Wansdyke	2.924	3.213	-0.289
Woodwpring	8.488	8.494	-0.006
N. Beds	7.611	6.920	0.691
Luton	12.904	10.368	2.536
M. Beds	3.620	3.900	-0.280
S.Beds	5.240	4.919	0.321
Bracknell	4.931	4.766	0.165
Newbury	5.190	5.541	-0.351
Reading	10.515	10.039	0.476
Slough	8.462	7.285	1.177
Windsor	6.577	6.442	0.135
Wokingham	5.404	5.222	0.182
Aylesbury	6.211	5.897	0.314
	2.314	2.482	-0.168
S.Bucks			
Chiltern	3.292	3.500	-0.208
M/Keynes	8.270	8.133	0.137
Wycombe	6.997	6.712	0.285
Cambridge	7.053	6.650	0.403
E.Cambs	1.782	2.192	-0.410
Fenland	3.224	3.384	-0.160
Huntingdon	5.630	5.707	-0.077
Peterboro	8.592	8.122	0.470
S.Cambs	3.753	4.190	-0.437
Chester	6.585	6.261	0.324
Congleton	3.169	3.237	-0.068
Crewe	5.102	5.029	0.073
Ellesmere	4.473	3.982	0.491
Halton	6.985	6.665	0.320
Mcclsfld	6.686	6.616	0.070
			-0.044
Vale Royal	4.586	4.630	
Warrington	9.525	9.239	0.286
Hartlepool	6.590	6.165	0.425
Langbaurgh	7.595	7.576	0.019
Mddlsbrgh	10.993	10.935	0.058
Stockton	10.289	9.939	0.350
Caradon	2.902	3.175	-0.273
Carrick	3.920	4.211	-0.291
Kerrier	3.969	4.000	-0.031
N.Cornwall	3.309	3.427	-0.118
Penwith	3.618	3.436	0.182
Restormel	4.448	4.138	0.310
Allerdale	4.741	4.823	-0.082
Barrow	4.258	4.461	-0.203
Carlisle	5.535	5.247	0.288
Copeland	3.216	3.328	-0.112
Eden	1.906	2.029	-0.123
S/Lakeland	4.624	4.775	-0.151

A/Valley	4.508	4.785	-0.277
Bolsover	2.956	3.071	-0.115
Chesterfield	5.710	6.031	-0.321
Derby	15.215	14.235	0.980
Erewash	5.320	5.116	0.204
High Peak	3.607	3.606	0.001
NE Derby	3.543	3.649	-0.106
S/Derbyshire	2.646	2.697	-0.051
Derby Dales	2.557	2.805	-0.248
E.Devon	4.858	5.528	-0.670
Exeter	6.668	6.632	0.036
N.Devon	4.215	4.109	0.106
Plymouth	19.055	17.893	1.162
South Hams	3.162	3.511	-0.349
Teignbridge	4.894	5.093	-0.199
Mid Devon	2.331	2.589	-0.258
Torbay	8.045	8.387	-0.342
Torridge	2.146	2.371	-0.225
W.Devon	1.756	1.893	-0.137
Bournemouth	12.380	13.069	-0.689
Christchurch	1.806	2.156	-0.350
N.Dorset	1.958	2.185	-0.227
Poole	6.590	7.221	-0.631
Purbeck	2.082	1.997	0.085
W.Dorset	3.621	4.082	-0.461
Weymouth	4.205	3.971	0.234
E.Dorset	2.546	2.922	-0.376
Chstr/L/Strt	2.177	2.324	-0.147
Darlington	6.716	6.203	0.513
Drwntside	4.113	4.279	-0.166
Durham	3.816	3.993	-0.177
Easington	5.207	5.424	-0.217
Sedgefield	4.027	4.317	-0.290
Teesdale	1.030	1.060	-0.030
Wear Valley	3.135	3.236	-0.101
Brighton	12.583	12.970	-0.387
Eastbourne	6.154	6.691	-0.537
Hastings	6.005	6.318	-0.313
Hove	7.591	7.712	-0.121
Lewes	3.565	4.023	-0.458
Rother	3.425	4.005	-0.580
Wealden	4.291	5.050	-0.759

OSB Needs	Variation	
Assessmen	nt	
7.729	7.659	0.070

Panildan	7.729	7.659	0.070
Basildon			
Braintree	4.436	4.846	-0.410
Brentwood	2.925	3.082	-0.157
C/Point	4.193	4.002	0.191
Chelmsford	6.440	6.523	-0.083
Colchester	6.884	6.937	-0.053
E/Forest	4.758	5.180	-0.422
Harlow	4.864	4.630	0.234
Maldon	1.824	2.055	-0.231
Rochford	3.043	3.009	0.034
Southend	11.085	12.115	-1.030
Tendring	5.865	6.667	-0.802
Thurrock	6.277	6.294	-0.017
Uttlesford	1.973	2.381	-0.408
Cheltenham	5.547	5.906	-0.359
Cotswold	2.695	3.200	-0.505
Forest/Dean	2.729	2.952	-0.223
Gloucester	5.907	5.870	0.037
Stroud	3.832	4.361	-0.529
Tewkesbury	3.142	3.316	-0.174
Basingstoke	6.672	6.308	0.364
		3.859	
E/Hampshire	3.615		-0.244
Eastleigh	4.060	4.199	-0.139
Fareham	4.107	4.228	-0.121
Gosport	4.700	4.617	0.083
Hart	3.122	2.991	0.131
Havant	6.403	6.023	0.380
N/Forest	6.622	7.180	-0.558
Portsmouth	17.269	16.638	0.631
Rushmoor	5.019	4.367	0.652
Southampton	16.608	16.035	0.573
Test Valley	3.848	4.057	-0.209
Winchester	3.660	4.019	-0.359
Bromsgrove	3.403	3.384	0.019
Hereford	2.760	2.916	-0.156
Leominster	1.636	1.649	-0.013
Malvern Hill	3.327	3.534	-0.207
Redditch	3.974	3.883	0.091
S/Hereford	1.922	2.008	-0.086
Worcester	4.463	4.925	-0.462
Wychavon	3.764	4.034	-0.270
	4.520	4.524	-0.004
Wyre Forest			
Broxbourne	4.045	4.023	0.022
Dacorum	6.604	6.348	0.256
E/Hertford	4.618	5.144	-0.526
Hertsmere	4.302	4.334	-0.032
N.Hertford	5.039	5.230	-0.191
St Albans	6.254	6.026	0.228
Stevenage	4.206	4.172	0.034
Three Rivers	3.474	3.464	0.010
Watford	5.703	5.422	0.281
Welwyn/Htfld	4.111	4.506	-0.395

Beverley Boothferry Cleethorpes Glanford G/Grimsby Holderness Hull E/Yorkshire Scunthorpe Medina South Wight Ashford Canterbury Dartford Dover Gillingham Gravesham Maidstone Rochester Sevenoaks Shepway Swale Thanet Tonbridge T/Wells Blackburn Blackpool Burnley Chorley Fylde Hyndburn Lancaster Pendle Preston Ribble Val Rossendale S/Ribble W.Lancashire Wyre Blaby Charnwood	4.430 3.103 4.691 2.580 7.135 1.768 24.070 3.703 4.015 3.810 2.754 4.286 6.086 4.200 5.522 6.204 5.608 6.577 9.060 4.187 5.050 5.044 7.929 4.111 4.680 10.686 13.885 6.543 3.907 3.696 4.897 7.995 5.081 9.694 1.915 2.901 4.253 4.739 5.054 3.101 5.813	4.344 3.075 4.103 2.647 6.792 1.901 22.061 3.836 3.922 3.761 2.610 4.384 6.553 4.023 5.453 5.481 4.881 6.300 8.188 4.393 5.154 5.224 8.421 4.208 4.749 9.492 13.321 5.748 3.932 3.729 4.526 7.622 4.782 8.742 1.971 3.184 4.123 4.690 5.095 3.017 6.059	0.086 0.028 0.588 -0.067 0.343 -0.133 2.009 -0.133 0.093 0.049 0.144 -0.098 -0.467 0.177 0.069 0.723 0.727 0.277 0.872 -0.206 -0.104 -0.180 -0.492 -0.097 -0.069 1.194 0.564 0.795 -0.025 -0.033 0.371 0.373 0.299 0.952 -0.056 -0.283 0.130 0.049 -0.041 0.084 -0.246
	4.739	4.690	0.049
Charnwood Harborough	5.813 2.041	6.059 2.302	-0.246 -0.261
Hinckley	3.546	3.657	-0.111
Leciester Melton	25.874	23.538	2.336
N.W.Leics	3.209	3.298	-0.089
Oadby/Wgtown	2.496	2.299	0.197
Rutland	1.230	1.242	0.004

Boston E/Lindsey	2.953 7.184	3.113 6.523	-0.160 0.661
Lincoln N/Kestevcen	5.514 2.976	5.820 3.133	-0.306 -0.157
S/Holland	2.919	3.267	-0.348
S/Kesteven	4.562	4.848	-0.286
W/Lindsey	3.098	3.163 4.190	-0.065 -0.241
Breckland Broadland	3.591	3.717	-0.126
G/Yarmouth	5.925	5.720	0.205
N.Norfolk	3.971	4.526	-0.555
Norwich S.Norfolk	8.978 3.152	9.570 3.561	-0.592 -0.409
Kings Lynn	6.210	6.386	-0.176
Corby	3.163	2.890	0.273
Daventry E.Northants	2.143 2.427	2.334 2.687	-0.191 -0.260
Kettering	3.783	3.764	0.019
Northampton	11.384	11.716	-0.332
S/Northants Wllngborough	1.927	2.253	-0.326 -0.082
Alnwick	1.423	1.531	-0.108
Berwick	1.217	1.387	-0.170
Blyth Valley Castle Mrpth	4.013	4.108	-0.095 -0.114
Tynedale	2.065	2.376	-0.311
Wansbeck	3.327	3.480	-0.153
Craven Hambleton	1.988	2.177 2.918	-0.189 -0.250
Harrogate	6.512	6.637	-0.125
Richmond	2.153	2.005	0.148
Ryedale	3.115 6.822	3.429 6.164	-0.314 0.658
Scarborough Selby	3.309	3.527	-0.218
York	7.301	7.602	-0.301
Ashfield Bassetlaw	4.717	4.961	-0.244 -0.055
Broxtowe	5.289	5.124	0.165
Gedling	5.579	5.205	0.374
Mansfield	5.056	5.198 4.718	-0.142
Newark Nottingham	4.905 24.350	23.604	0.187
Rushcliffe	3.886	3.953	-0.067
Cherwell	5.650	5.295	0.355
Oxford S.Oxford	9.379 5.009	8.621 5.193	0.758
Vale Wht/Hrs	4.114	4.239	-0.125
West Oxford	3.654	3.716	-0.062
Bridgmorth N.Shropshire	1.962 2.053	1.991	-0.029 -0.159
Oswestry	1.288	1.408	-0.120
Shrewsbury	4.086	4.103	-0.017
S.Shropshire Wrekin	1.555 6.859	1.643 6.512	-0.088 0.347

Mendip	3.948	4.041	-0.093
Sedgemoor	4.337	4.347	-0.010
Taunton	4.577	4.593	-0.016
W.Somerset	1.955	1.715	0.240
S.Somerset	5.723	6.165	-0.442
Cannock	4.515	4.351	0.164
E.Stafford	5.384	5.085	0.299
Lichfield	3.947	3.717	0.230
Newcastle	5.546	5.586	-0.040
S.Stafford	3.798	3.731	0.067
Stafford	5.658	5.331	0.327
	3.597		
Stff Mrlnds		3.551	0.046
Stoke	15.042	15.668	-0.626
Tamworth	3.446	3.417	0.029
Babergh	2.819	3.062	-0.243
Forest Heath	2.332	2.486	-0.154
Ipswich	8.254	8.313	-0.059
Mid Suffolk	2.578	2.903	-0.325
St Edmundbry	3.922	4.074	-0.152
Sfflk Coast	4.128	4.542	-0.414
Waveney	5.587	5.871	-0.284
Elmbridge	5.339	5.214	0.125
Epsom	3.653	3.229	0.424
		5.888	
Guildford	6.307		0.419
Mole Valley	3.024	3.207	-0.183
Reigate	5.348	5.053	0.295
Runnymede	4.658	4.487	0.171
Spelthorne	4.822	4.327	0.495
Surrey Heath	3.509	3.381	0.128
	3.109	3.080	0.029
Tandridge			
Waverley	4.319	4.671	-0.352
Woking	4.208	3.940	0.268
N.Warwicks	2.131	2.236	-0.105
Nuneaton	5.539	5.661	-0.122
Rugby	4.264	4.092	0.172
Stratford	3.632	4.104	-0.472
Warwick	5.952	5.843	0.109
Adur	2.623	2.954	-0.331
Arun	6.146	6.911	-0.765
Chichester	4.208	4.758	-0.550
Crawley	5.199	4.956	0.243
Horsham	4.069	4.453	-0.384
	4.597	4.857	-0.260
Mid Sussex			
Worthing	5.757	6.863	-1.106
Kennet	2.700	2.784	-0.084
N.Wiltshire	4.473	4.625	-0.152
Salisbury	4.671	4.654	0.017
Thamesdown	9.591	9.190	0.401
W.Wiltshire	4.065	4.456	-0.391
M.MIICPHILE	4.005	4.430	0.371

TABLES OF OPTIONS

This annex contains tables exemplifying the needs assessment options for each service as described in the main report.

The tables are ordered as follows:

Table 1 : Education

Table 2 : Personal Social Services

Table 3 : Police

Table 4 : Fire

Table 5 : Highway Maintenance

Table 6 : Other Services Block

Table 7 : Area Cost Adjustment

Table 8 : Capital

Columns 1-3 of the tables contain common information on expenditure and GRE for each service:

Column 1: 1986/87 revenue outturn expenditure scaled to 1989/90 GRE

Column 2: 1988/89 estimated budgetted expenditure scaled to 1989/90 GRE

Column 3: 1989/90 GRE

A cover note to each table describes the options which are exemplified in column 4 onwards.

Cover Sheet to Annex B, Table 1

EDUCATION

The 5 Options which have been exemplified differ only in their treatment of the Additional Educational Need Adjustment (AEN). The table below provides details. The method of assessment is generally the same as described in DOE/DES's initial proposals. Two exceptions are that the 'integrated' method of weighting the 'post 16'pupil and student numbers described in Education 35 has been included and the careers control total has been incorporated into the secondary and post 16 blocks.

Option	Short	Detailed Description of Each Option
Number	Name	
1	ACC Mid	Overall weight for AEN of 12%: By service block; 13% for primary and secondary, 6% for post 16 and 20% for other services.
2	DES/DOE	Overall weight for AEN of 14%. By service
	Low AEN	block; 15% for primary and secondary, 2%
		for post 16 and 30% for other services.
3	DES/DOE	Overall weight for AEN of 21%. By service
	Mid	block; 20% for primary and secondary, 12%
		for post 16 and 50% for other services.
4	DES/DOE	Overall weight for AEN of 24%. By service
	High AEN	block; 20% for primary and secondary, 18%
		for post 16 and 70% for other services.
5	ALA AEN	The AEN index is raised to the power 1.4
	Factorised	as in the primary and secondary blocks.
	Option	Overall weight for AEN of 27%. By service
		block; 20% for primary, secondary and
		post 16 and 100% for other services.

COTTONS	COD	ETY CATTON	NEEDS	ASSESSMENTS

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8
	Scaled	Scaled	Total	Option	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)	(v)
	exp	ехр	GRE					
	(£m)							
TOTAL England	13,453.600	13,453.600	13,453.600	13,453.600	13,453.600	13,453.600	13,453.600	13,453.600
TOTAL Shire counties	7,747.697	7,768.063	8,213.298	8,189.628	8,159.230	8,028.149	7,976.326	7,7%.858
TOTAL Metropolitan districts	3,334.196	3,416.975	3,357.429	3,356.762	3,371.004	3,429.496	3,450.447	3,519.332
TOTAL inner London boroughs	1,045.493	963.809	620.749	644.302	656.191	706.160	727.801	809.490
TOTAL outer London boroughs	1,325.334	1,303.636	1,261.083	1,262.348	1,266.622	1,289.272	1,298.514	1,327.429
TOTAL Shire areas	7,747.697	7,768.271	8,213.298	8,189.628	8,159.230	8,028.149	7,976.326	7,7%.858
TOTAL Metropolitan areas	3,334.196	3,416.975	3,357.429	3,356.762	3,371.004	3,429.496	3,450.447	3,519.332
TOTAL London	2,370.826	2,267.445	1,881.832	1,906.651	1,922.813	1,995.432	2,026.314	2,136.919

OPTIONS FOR EDUCATION NEEDS ASSESSMENTS								
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8
	Scaled	Scaled	Total	Option	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)	(v)
	еф	exp	GRE					
	15-1	(5-)	(5-)	(5-1)	(£m)	(£m)	(£m)	(£m)
	(£m)	(£m)	(£m)	(£m)	(EIII)	(EIII)	(EIII)	(211)
SHIRE COUNTIES								
		2/2 2/2	270 004	2/4 /4/	240.703	237.866	236.706	232.061
Avon	239.831	242.068	239.901 158.783	241.414 156.984	156.851	156.320	156.075	154.431
Bedfordshire	149.485	158.934		208.390	207.604	203.976	202.490	197.570
Berkshire	194.480	180.297	210.113	187.920	187.086	183.482	182.107	177.318
Buckinghamshire	175.615 169.828	174.231 173.648	182.716	181.351	180.994	177.430	176.051	171.302
Cambridgeshire	109.028	173.040	102.110	101.031	100.774	177.450	170.051	171.502
Cheshire	267.986	267.513	286.948	284. 3	283.433	278.356	276.370	269.618
Cleveland	178.298	185.273	181.472	182	183.719	186.789	187.824	190.713
Cornwall	113.021	113.463	130.349	130,958	130.507	128.503	127.737	124.858
Cumbria	142.912	142.953	136.019	136.622	135.828	132.350	131.040	126.925
Derbyshire	265.860	282.312	261.839	259.163	258.240	254.523	253.100	247.475
Devon	235.746	234.463	259.073	260.704	259.649	255.132	253.335	247.081
Dorset	142.937	137 -151	150.919	150.895	149.999	146.399	144.968	140.458
Durham .	166.563	176.429	171.023	171.864	171.726	171.193	170.951	169.185
East Sussex	139.966	129.882	154.621	155.528	155.040	152.962	152.069	148.897
Essex	404.649	420.683	427.437	427.549	425,208	416.119	412.732	400.780
Gloucestershire	136.812	136.162	142.386	141.788	141.162	138.437	137.367	133.754
Hampshire	388.920	382.366	416.614	418.039	416.429	409.137	406.185	396.262
Hereford and Worcester	171.336	161.826	190.974	189.700	188.755	184.525	182.898	177.645
Hertfordshire	270.015	270.439	272.452	270.942	269.372	262.338	259.567	251.308
Humberside	254.443	260.234	255.115	255.561	255.624	255.861	255.866	254.439
Isle of Wight	31.978	32.559	32.798	32.927	32.794	32.171	31.922	31.107
Kent	369.656	360.780	426.394	424.293	422.378	414.308	411.203	400.370
Lancashire	386.561	390.408	412.612	411.171	411.240	411.528	411.510	409.187
Leicestershire	252.201	250.439	263.221	260.107	259.927	259.165	258.803	256.249
Lincolnshire	147.212	145.480	169.905	169.025	168.319	165.303	164.182	160.056
	177.001	181.682	198.703	199.293	198.328	194.440	192.971	187.742
Norfolk	159.657	166.864	170.872	170.383	169.815	167.581	166.744	163.215
Northamptonshire		84.703	86.651	85.572	85.024	82.821	82.019	79.371
Northumberland	84.951 179.569	174.839	189.819	188.379	187.207	181.706	179.557	173.488
North Yorkshire	287.746	291.653	285.566	286.298	286.396	286.786	286.841	285.433
Nottinghamshire	201.140	271.033	200.000	200.270		200.700	20.071	
Oxfordshire	130.575	130.593	140.573	140.520	139.597	135.491	133.788	129.143
Shropshire	112.986	116.376	121.475	120.664	120.276	118.550	117.891	115.346
Somerset	114.836	125.341	121.895	121.666	120.870	117.481	116.194	112.291
Staffordshire	288.282	280.371	294.616	291.708	290.242	284.320	282.088	274.251
Suffolk	156.385	157.991	167.085	166.007	164.802	160.105	158.291	152.758
Surrey	232.806	219.033	242.472	240.836	239.234	231.462	228.195	219.921
Warwickshire	130.832	128.129	139.409	138.142	137.532	134.612	133.471	129.828
West Sussex	148.775	147.875	174.693	173.793	172.647	167.571	165.555	159.846
Wiltshire	146.983	152.622	156.774	155.527	154.675	151.054	149.664	145.174
								3116
Isles of Scilly	.881	.909	1.040	.559	.552	.523	.513	.491

COTTONS	EOD	ENICATION	NEEDS	ASSESSMENTS

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8
	Scaled	Scaled	Total	Option	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)	(v)
	ехр	ехр	GRE					
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
GREATER LONDON								
City of London	1.462	2.436	.301	.306	.304	.294	.287	.276
Camden	66.065	65.992	38.002	38.628	39.328	42.113	43.435	47.629
Greenwich	113.309	100.618	65.704	66.060	66.651	68.684	69.423	72.040
Hackney	97.432	83.497	64.298	66.565	68.243	75.567	78.638	92.100
Hammersmith and Fulham	58.440	58.283	30.928	32.302	32.867	35.274	36.437	39.990
Islington	83.851	63.611	45.930	47.886	48.727	52.551	54.231	60.180
Kensington and Chelsea	35.423	30.420	21.312	22.475	22.882	24.666	25.621	28.147
Lambeth	116.565	96.970	70.829	75.710	77.227	84.808	88.178	100.612
Lewisham	105.548	105.711	64.056	65.207	66.103	69.761	71.286	76.579
Southwark	111.136	91.690	67.443	70.088	71.470	77.181	79.523	89.060
Tower Hamlets	91.702	86.787	59.766	63.129	64.991	71.120	73.340	85.926
Wandsworth	. 104.714	107.674	59.474	62.604	63.452	67.196	68.897	74.129
Westminster	59.844	70.119	32.706	33.342	33.947	36.945	38.505	42.821
Barking and Dagenham	44.080	50.539	42.905	43.355	43.513	44.026	44.196	44.606
Barnet	79.761	67.237	74.909	74.824	75.028	75.997	76.397	77.116
Bexley	62.793	62.895	62.607	62.199	61.815	60.282	59.690	57.795
Brent	101.273	86.467	88.806	89.339	90.343	96.991	99.868	109.083
Bromley	71.322	67.467	72.457	72.794	72.513	71.303	70.790	69.090
Croydon	90.818	94.442	87.850	89.092	89.394	90.764	91.299	92.454
Ealing	88.475	94.092	85.937	84.945	85.755	89.633	91.278	96.239
Enfield	73.733	74.191	77.380	77.081	77.282	78.167	78.490	79.095
Haringey	84.710	67.938	62.161	63.391	64.261	69.274	71.450	78.782
Harrow	60.729	55.497	56.663	56.758	56.761	56.782	56.774	56.459
Havering	71.512	72.207	67.431	66.865	66.378	64.545	63.871	61.676
Hillingdon	64.228	67.506	62.162	61.996	61.789	60.948	60.597	59.301
Hounslow	63.875	67.577	59.092	58.588	58.875	60.109	60.579	61.826
Kingston-upon-Thames	33.843	31.758	33.090	33.139	33.032	32.550	32.342	31.639
Herton	40.512	42.660	41.229	41.776	41.890	42.372	42.562	42.901
Newham	80.778	88.228	81.724	81.090	82.373	87.933	90.060	98.856
Redbridge	60.065	58.578	62.834	62.315	62.342	62.454	62.477	62.210
Richmond-upon-Thames	35.634	31.154	31.734	32.212	32.125	31.749	31.564	30.970
Sutton	40.741	44.213	43.610	43.855	43.665	42.898	42.583	41.506
Waltham Forest	76.452	78.992	66,502	66.732	67.490	70.495	71.647	75.827

OPTIONS FOR FOLICATION NEFTS ASSESSMENTS	ü	ACCECCHENT	MEEDE	EDI MATTON	ECO	COTTONE

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8
	Scaled	Scaled	Total	Option	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)	(v)
	exp	ФФ	GRE					
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
GREATER MANCHESTER	77 405	77 277	81.905	81.459	81.768	83.049	83.497	0/ 47/
Bolton	73.105 48.664	73.277	49.558	49.618	49.502	48.990	48.782	84.634 47.920
Bury Manchester	165.387	153.128	134.883	138.073	139.954	148.063	151.248	163.268
Oldham	62.192	66.397	69.148	68.944	69.229	70.334	70.709	71.727
Rochdale	66.311	70.494	64.936	64.367	64.558	65.298	65.545	66.077
Salford	66.144	73.447	64.775	65.404	65.789	67.262	67.801	69.414
Stockport	76,718	72.727	80.036	79.886	79.585	78.154	77.574	75.670
Tameside	61.607	65.710	64.425	64.425	64.519	64.896	65.015	65.058
Trafford	56.835	53.859	61.697	61.432	61.430	61.420	61.397	61.004
Wigan	97.841	101.027	93.744	93.065	92.806	91.670	91.226	89.438
MERSEYSIDE								
Knowsley	58.254	62.690	56.116	57.398	58.041	60.672	61.615	65.349
Liverpool	164.156	165.053	147.406	150.978	152.506	159.101	161.576	170.498
St Helens	59.276	63.171	58.480	57.949	57.810	57.130	56.862	55.802
Sefton	75.523	71.060	82.482	82.666	82.641	82.528	82.460	81.312
Wirral	94.560	97.319	99.056	100.145	100.452	101.817	102.305	103.382
SOUTH YORKSHIRE								
Barnsley	63.298	63.086	63.203	62.520	62.385	61.876	61.675	60.682
Doncaster	88.940	90.756	87.502	87.492	87.490	87.482	87.452	86.862
Rotherham	74.541	82.580	77.996	77.390	77.315	77.011	76.880	76.021
Sheffield .	156.636	143.172	139.978	138.083	138.268	139.044	139.300	139.356
TYNE AND WEAR								
Gateshead	58.410	60.347	54.383	54.401	54.400	54.398	54.380	54.015
Newcastle upon Tyne	81.623	82.752	71.159	72.885	73.383	75.331	76.081	78.333
North Tyneside	61.302	57.393	54.837	55.403	55.368	55.203	55.124	54.594
South Tyneside	50.639	51.185	44.881	45.923	46.107	46.921	47.218	47.974
Sunderland	83.625	81.249	89.254	90.089	90.296	91.062	91.306	91.692
WEST MIDLANDS								
Birmingham	289.724	297.215	339.154	337.862	342.290	360.443	367.081	394.144
Coventry	95.074	96.909	94.824	93.994	94.648	97.543	98.635	102.044
Dudley	79.793	82.099	86.241	85.628	85.444	84.673	84.363	82.968
Sandwell	97.145	110.972	95.963	94.499	95.232	98.335	99.461	103.290
Solihull	56.330	53.848	59.808	60.069	59.969	59.501	59.309	58.429
Walsall	85.630	93.756	83.399	83.092	83.506	85.227	85.828	87.602
Wolverhampton	81.548	83.639	84.120	83.310	84.296	88.417	89.901	95.855
WEST YORKSHIRE						***	444 740	470 407
Bradford	152.061	169.434	158.653	156.384	157.705	162.662	164.369	170.693
Calderdale	57.455	61.477	59.843	59.633	59.714	60.056	60.163	60.190
Kirklees	113.806	120.304	121.629	119.303	119.582 195.926	120.836	121.264	122.038
Leeds Wakefield	189.064 90.981	197.710 97.511	193.980 87.976	195.601 87.391	87.090	85.884	85.414	83.560
waker retu	70.701	71.311	01.710	01.371	01.070	07.004	03.414	۵.50

Cover Sheet to Annex B, Table 2

PERSONAL SOCIAL SERVICES

The 4 options which have been exemplified each contain the same other social services assessment; one of two ways of assessing need for services for the elderly; and one of four ways of assessing children's services. The same assessment for elderly residential care places is in each option.

Option	Short	Detailed Description of Each Option
Number	Name	
1	ACC	Elderly domiciliary assessment based on
	Average	analysis of the GHS. For children no
	Cost	separate assessment for non-
		residential/foster spending. PSSRU's
		numbers in care and foster care formulae.
		Average cost used throughout the
		assessment.
2	DOE	Elderly domiciliary assessment based on
	Mixed	analysis of the GHS. For children separate
	Cost	formulae for residential/foster and
		non-residential/foster spending. Regression
		derived numbers in care formula, no foster
		care adjustment. Average cost for the
		elderly residential care assessment;
		variable costs for the children's
		assessment.
3	ALA/AMA/	Elderly domiciliary assessment based on
	LBA Mixed	regression. For children separate
	Cost	assessments for residential/foster and non-
		residential/foster spending. PSSRU's
		numbers in care and foster care formulae.

Variable costs for the elderly residential care assessment and for children's residential/foster spending. Average cost for children's non-residential/foster assessment.

4 ALA/AMA Variable Cost

ALA/AMA Elderly domiciliary assessment based on Variable regression. For children separate Cost assessments for residential/foster and non-residential/foster spending. PSSRU's numbers in care and foster care formulae. Variable costs used throughout the assessment.

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	ехр	GRE				
	(fm)	(£m)	(£m)	(£m)	(fm)	(<u>fm</u>)	(£m)
TOTAL England	3,215.100	3,215.100	3,215.100	3,215.100	3,215.100	3,215.100	3,215.100
TOTAL Shire counties	1,502.690	1,504.583	1,604.190	1,641.165	1,617.344	1,490.396	1,435.565
TOTAL Metropolitan districts	843.982	860.258	870.006	879.648	849.689	923.461	924.404
TOTAL inner London boroughs	479.127	449.973	385.898	327.613	384.315	413.936	453.541
TOTAL outer London boroughs	389.191	388.170	354.933	366.564	363.662	387.194	401.480
TOTAL Shire areas	1,502.690	1,516.592	1,604.190	1,641.165	1,617.344	1,490.396	1,435.565
TOTAL Metropolitan areas	843.982	860.258	870.006	879.648	849.689	923.461	924.404
TOTAL London	868.318	838.143	740.832	694.177	747.977	801.130	855.021

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	exp	GRE				
	(£m)	(£m)	(£m)	(£m)	(fm)	(£m)	(£m)
SHIRE COUNTIES							
Avon	57.527	57.404	53.448	54.082	55.452	52.008	50.920
Bedfordshire	28.025	28.979	26.542	29.165	27.640	27.664	26.839
Berkshire	38.338	39.519	34.676	37.341	35.914	34.203	33.059
Buckinghamshire	31.527	32.051	25.639	28.326	27.995	26.309	25.060
Cambridgeshire	32.420	35.309	30.035	33.865	33.226	31.199	29,791
Cheshire	53.062	53.301	46.632	50.386	48.665	46.097	43.783
Cleveland	38.404	36.988	40.983	38.831	37.934	40.485	39.822
Cornwall	20.924	22.531	25.312	23.782	23.934	19.661	18.689
Cumbria	28.203	25.795	24.585	28.101	27.302	25.042	23.891
Derbyshire	59.748	63.258	54.519	53.066	51.467	49.101	47.046
Devon	48.044	48.232	61.736	57.588	59.244	45.514	44.191
Dorset	28.137	27.912	36.507	. 38,490	39.120	31.172	30.337
Durham	30.968	30.710	36.548	40.881	38.935	39.202	37.768
East Sussex	38.553	38.828	53.275	45.983	48.000	43.235	42.768
Essex .	75.160	72.594	74.592	79.753	78.250	74.364	71.296
Gloucestershire	21.803	23.124	26,277	27.856	27.551	24.439	23.414
Hampshire	63.342	62.384	75.980	78.098	78.873	68.010	65.463
Hereford and Worcester	30.463	29.832	31.600	33.456	33.138	29.782	28.311
Hertfordshire	45.915	48.289	44.740	50:335	49.235	45.460	43.633
Humberside	52.259	54.458	60.630	54.732	54.295	54.812	53.177
		1 517	7.689	7.030	7.246	5.350	5.153
Isle of Wight	6.934	6.567	85.885	87.399	86.471	82.843	80.192
Kent	88.626	89.249	97.230	88.040	85.117	77.983	75.730
Lancashire	46.846	47.760	52.054	50.568	48.270	50.415	48.943
Leicestershire Lincolnshire	27.657	26.006	30.265	30.974	30.530	28.364	27.019
Norfolk	35.315	32.766	40.219	42.689	42.403	37.342	35.731
Northamptonshire	30.904	31.707	31.132	32.085	31.311	28.913	27.711
Northumberland	16.938	16.568	14.471	17.125	16.136	16.180	15.332
North Yorkshire	32.223	30.762	34.001	37.337	36.702	31.419	30.065
Nottinghamshire	70.485	67.629	65.806	65.945	65.230	63.236	61.319
Oxfordshire	27.627	28.162	24.094	27.349	26.639	24.690	23.597
Shropshire	15.629	16.373	19.521	20.669	20.439	18.871	17.833
Somerset	21.914	21.950	22.480	24.008	24.146	19.327	18.446
Staffordshire	45.332	44.797	54.441	55.829	52.767	52.061	49.583
Suffolk	26.602	25.995	32.638	34.008	33.353	30.897	29.537
Surrey	38.788	38.234	41.907	45.703	45.000	39.748	38.221
Warwickshire	23.501	23.962	23.109	24.348	23.712	22.270	21.317
West Sussex	30.169	29.515	37.609	37.665	38.093	29.042	28.094
Wiltshire	25.562	25.954	25.383	28.276	27.608	23.685	22.484
Isles of Scilly	.111	.107	.072	.110	.090	.113	.110

	coL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	exb	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(fm)
GREATER LONDON							
City of London	1.563	2.085	.212	.359	.338	.400	.417
Camden	45.620	33.619	29.100	24.976	29.302	33.054	35.634
Greenwich	31.287	30.554	22.394	24.380	22.999	25.371	25.772
Hackney	45.796	43.471	39.285	31.576	39.343	41.499	46.682
Hammersmith and Fulham	33.139	29.345	29.982	22.353	27.785	30.243	33.638
Islington	45.263	40.246	29.290	25.467	30.147	31.762	34.819
Kensington and Chelsea	21.382	22.466	19.915	17.175	21.033	22.882	25.271
Lambeth	52.457	49.909	50.289	35.624	49.013	48.383	55.333
Lewisham	45.021	42.890	30.642	27.132	30.217	32.138	34.758
Southwark	51.461	49.288	36.489	32.727	37.666	39.852	43.451
Tower Hamlets	28.592	30.214	30.178	28.398	29.052	34.491	37.002
Wandsworth	40.875	43.346	38.785	32.023	37.403	39.048	43.013
Westminster	36.671	32.542	29.338	25.424	30.017	34.813	37.750
Barking and Dagenham	11.218	11.873	11.203	15.952	13.723	16.440	16.580
Barnet	21.951	20.737	20.374	23.415	22.229	20.899	21.033
Bexley	12.996	12.848	10.423	11.781	11.505	11.750	11.471
Brent	39.663	34.212	30.745	29.018	31.314	32.599	35.797
Bromley	17.753	16.838	17.413	19.021	19.049	16.725	16.391
Croydon	23.850	24.571	23.904	24.160	24.507	24.129	24.708
Ealing	25.980	28.930	28.751	30.330	27.629	32.335	34.204
Enfield	19.065	19.709	17.203	19.513	18.118	21.076	21.184
Haringey	35.773	28.312	28.975	23.555	28.845	29.841	33.670
Harrow	14.687	14.014	10.835	12.364	11.521	11.591	11.578
Havering	14.831	15.416	12.466	12.302	11.785	11.695	11.356
Hillingdon	20.162	22.134	12.553	15.557	14.384	15.204	14.860
Hounslow	19.266	20.221	15.747	17.435	15.819	19.286	19.901
Kingston-upon-Thames	10.911	10.856	8.944	9.367	9.507	8.740	8.760
Merton	14.067	14.591	13.382	13.988	13.847	14.476	14.814
Newham	23.497	26.605	30.558	27.768	28.088	34.487	37.697
Redbridge	15.859	16.122	14.681	14.734	14.744	14.597	14.783
Richmond-upon-Thames	11.807	11.029	12.404	11.754	12.440	12.318	12.411
Sutton	10.774	11.588	10.160	11.113	10.964	10.010	9.881
Waltham Forest	25.078	27.563	24.213	23.437	23.643	28.997	30.398

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	
	Scaled	Scaled	Total	Option	Option	Option	Option	
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)	
	еф	ехр	GRE					
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	
	(211)							
GREATER MANCHESTER							40.044	
Bolton	16.154	16.446	21.858	20.742	19.018	20.407	19.941	
Bury	10.802	10.564	10.288	11.031	11.023	10.029	9.778	
Manchester	63.802	56.566	56.797	51.615	54.147	59.865	62.944	
Oldham	15.466	15.775	19.312	17.177	16.347	17.537	17.361	
Rochdale	18.239	19.398	17.686	17.277	15.933	17.240	16.986	
Salford	18.144	19.259	22.616	21.335	21.292	23.905	24.249	
Stockport	16.661	16.610	16.340	16.025	16.003	16.290	15.822	
Tames ide	17.050	17.242	17.041	15.495	14.882	16.440	16.140	
Trafford	11.095	12.950	14.122	12.555	13.117	12.823	12.762	
Wigan	17.986	17.938	17.524	17.930	17.343	17.651	16.903	
MERSEYSIDE								
Knowsley	12.039	11.234	15.194	16.212	16.242	17.544	18.215	
Liverpool	42.648	43.089	51.804	50.869	52.377	59.284	61.756	
St Helens	11.313	12.956	11.545	11.324	10.853	11.280	10.861	
Sefton	17.478	18.590	19.143	19.660	19.153	18.398	17.991	
Wirral	23.189	24.957	22.247	23.804	24.492	25.356	24.999	
SOUTH YORKSHIRE								
Barnsley	11.898	12.778	12.865	13.204	12.485	13.115	12.505	
Doncaster	15.258	16.350	18.530	17.686	17.058	16.936	16.111	
Rotherham	15.188	15.626	14.070	16.196	15.322	15.534	14.762	
Sheffield	49.704	46.099	40.248	41.704	40.952	44.761	44.444	
TYNE AND WEAR								
Gateshead	15.244	15.714	14.419	16.390	15.229	18.302	18.100	
Newcastle upon Tyne	29.440	30.098	22.883	24.567	23.619	29.192	29.212	
North Tyneside	17.179	17.611	13.339	13.842	14.151	14.065	13.902	
South Tyneside	11.090	11.993	12.342	13.534	13.474	15.779	15.770	
Sunderland	20.981	20.237	18.942	23.028	20.539	23.237	22.412	
WEST MIDLANDS								
Birmingham	81.829	86.867	103.722	95.923	90.966	108.083	112.093	
Coventry	28.854	27.510	25.651	27.365	24.784	27.648	28.221	
Dudley	15.215	15.287	13.539	16.949	16.117	15.694	15.067	
Sandwell	20.534	22.651	25.392	28.075	25.439	29.848	30.258	
Solihull	10.107	10.512	9.636	10.667	10.645	9.642	9.260	
Walsall	15.517	16.118	17.056	18.644	16.883	18.482	18.153	
Wolverhampton	21.022	21.891	23.233	22.717	20.867	25.607	26.313	
HEET VORVENTRE								
WEST YORKSHIRE	42.082	42.007	42.289	40.848	37.223	41.429	41.323	
Bradford	13.637	14.279	14.298	14.741	14.286	13.985	13.608	
Calderdale	27.560	25.812	27.847	28.786	26.369	27.314	26.692	
Kirklees	50.009	56.676	49.045	52.691	52.965	53.102	52.696	
Leeds	19.568	20.566	17.145	19.040	18.093	17.653	16.796	
Wakefield	17.308	۵.500	11.143	17.000	10.073	11.000	.5.175	

Cover Sheet to Annex B, Table 3.

POLICE

The following options are exemplified in Table 3, below:

(i) Metropolitan Police needs assessment based on budgetted expenditure as approved by the Home Secretary; needs assessment for other police forces distributed on police establishments, as for existing GRE.

(ii) Metropolitan Police needs assessment based on budgetted expenditure as approved by the Home Secretary; needs assessment for other police forces distributed on police establishments with an allowance (50%) for civilians in key posts.

(iii) Metropolitan Police needs assessment based on budgetted expenditure as approved by the Home Secretary; needs assessment for other police forces distributed on police establishments with an allowance (40%) for civilians in key posts.

expenditure as approved by the Home Secretary; needs assessment for other police forces distributed on police establishments with an allowance (48%) for all civilians except those involved in functions most likely to be contracted out, ie radio technicians, handymen, vehicle workshop staff, catering staff and premises staff.

NOTE: Debt charges on police capital expenditure have now been moved to the capital assessment.

OPTIONS FOR POLICE NEEDS ASSESSMENT

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	еф	еф	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
TOTAL England	1,879.589	1,879.589	1,879.589	1,879.589	1,879.589	1,879.589
TOTAL Shire counties	901.139	896.015	885.185	885.185	887.662	888.619
TOTAL Metropolitan Police Authorities	447.682	456.106	453.429	453.429	450.370	449.353
Metropolitan Police	508.095	502.701	525.098	525.098	525.098	525.098
TOTAL Shire areas	901.139	896.015	885.185	885.185	887.662	888.619
TOTAL Metropolitan areas	447.682	456.106	453.429	453.429	450.370	449.353
TOTAL London	530.716	527.442	540.926	540.926	541.509	541.569

OPTIONS FOR POLICE NEEDS ASSESSMENT

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	2700/87	еф	GRE	.,,		
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
SHIRE COUNTIES						
	34.240	33.376	32.897	32.897	31.985	32,550
Avon	15.609	15.970	15.549	15.549	15.727	15.569
Bedfordshire	21.690	21.263	21.167	21.167	21.320	21.582
Berkshire	18.377	17.810	17.349	17.349	17.475	17.690
Buckinghamshire	18.015	18.304	17.813	17.813	18.124	18.254
Cambridgeshire	10.015	10.304	17.013	17.015	10.124	10.254
Cheshire	27.815	27.475	28.078	28.078	27.692	27.790
Cleveland	22.202	21.651	22.251	22.251	22.058	21.721
Cornwall	14.208	13.961	12.741	12.741	12.759	12.927
Cumbria	17.345	17.686	17.269	17.269	17.192	17.126
Derbyshire	28.093	27.831	27.067	27.067	28.591	28.095
	77 070	33.272	29.887	29.887	29.929	30.324
Devon	33.878		18.643	18.643	19.050	19.385
Dorset	21.474	20.468				20.327
Durham	20.231	20.388	20.485	20.485	20.790	22.051
East Sussex	20.910	20.612	22.044	22.044	22.112	
Essex	42.000	43.798	42.737	42.737	43.293	43.263
Gloucestershire	16.510	16.781	17.571	17.571	17.244	17.420
Hampshire	49.529	46.218	44.386	44.386	43.993	44.255
Hereford and Worcester	19.786	19.192	18.414	18.414	19.007	18.861
Hertfordshire	24.939	25.683	26.172	26, 172	26.079	26.382
Humberside	30.297	30.620	29.769	29.769	30.180	29.764
Isle of Wight	2.961	2.991	2.833	2.833	2.808	2.825
Kent	46.331	45.709	44.840	44.840	45.034	45.295-
Lancashire	47.209	48.468	47.672	47.672	48.252	47.167
Leicestershire	26.093	27.197	26.161	26.161	26.234	26.478
Lincolnshire	18.098	18.849	17.858	17.858	17.559	17.669
Norfolk	20.344	20.524	20.198	20.198	19.831	20.027
Northamptonshire	16.941	17.174	16,696	16.696	16.771	16.706
Northumberland						
North Yorkshire	20.845	21.346	20.651	20.651	20.541	20.749
	34.258	33.527	34.630	34.630	33.963	34.229
Nottinghamshire	34.20	33.321	34.00	54.000	33.70	
Oxfordshire	17.097	16.978	16.491	16.491	16.610	16.815
Shropshire	11.877	11.643	11.219	11.219	11.580	11.491
Somerset	13.627	13.357	13.145	13.145	12.780	13.006
Staffordshire	31.163	30.429	32.697	32.697	32.696	32.643
Suffolk	18.847	18.178	17.903	17.903	18.255	18.035
Surrey	24.811	24.862	26.622	26.622	26.263	26.255
Warwickshire	14.474	14.211	14.809	14.809	14.874	15.037
West Sussex	22.145	21.027	22.257	22.257	22.325	22.263
Wiltshire	16.869	17.134	16.213	16.213	16.686	16.595
		224	0/0	0/9	0/9	0/0
Isles of Scilly	.052	.026	.048	.048	.048	.048

Annex	-	Tabl	- 7

OPTIONS	FOR	POLICE	NEEDS	ASSESSMENT
---------	-----	--------	-------	------------

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	еф	exp	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
Metropolitan Police	508.095	502.701	525.098	525.098	525.098	525.098
Greater Manchester Police Authority	104.041	104.606	104.809	104.809	103.281	103.455
Merseyside Police Authority	73.775	73.627	70.633	70.633	69.725	69.081
South Yorkshire Police Authority	42.284	42.976	44.547	44.547	44.246	43.917
Northumbria Police Authority	54.933	54.512	52.578	52.578	52.698	53.116
West Midlands Police Authority	97.618	101.191	101.956	101.956	101.744	101.848
West Yorkshire Police Authority	75.032	79.194	78.905	78.905	78.675	77.937

Cover Sheet to Annex B Table 4

FIRE AND CIVIL DEFENCE

The following options are exemplified in Table 4, below:

- (i) Needs assessment for fire and civil defence to depend on ward-weighted density, weighted risk area and fire and special service calls scaled by population with weights determined by regression analysis.
- (ii) Needs assessment for fire and civil defence to depend on ward-weighted density, weighted risk area and total calls scaled by population with weights determined by regression analysis.
- (iii) Needs assessment for fire and civil defence on fire and false alarm calls scaled by population with weights determined by regression analysis.
- (iv) Needs assessment for fire and civil defence to be based on present GRE formulation ie ward-weighted density, firecalls, area and risk A area (including special risk), scaled by population with judgemental weights.

OPTIONS FOR FIRE NEEDS ASSESSMENT

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	ехр	GRE				
	(fm)	(£m)	(£m)	(£m)	(£m)	(£m)	(fm)
TOTAL England	769.200	769.200	769.200	769.200	769.200	769.200	769.200
TOTAL Shire counties	400.888	410.825	417.482	407.199	401.778	414.932	421.863
TOTAL Metropolitan Fire Authorities	194.018	199.490	189.092	187.337	194.490	210.566	187.865
London Fire & CD Authority	174.236	158.820	162.551	174.627	172.898	143.678	159.445
TOTAL Shire areas	400.888	410.825	417.482	407.199	401.778	414.932	421.863
TOTAL Metropolitan areas	194.018	199.490	189.092	187.337	194.490	210.566	187.865
TOTAL London	174.236	158.820	162.551	174.627	172.898	143.678	159.445

OPTIONS FOR FIRE NEEDS ASSESSMENT

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	exb	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
CUIDE COLDITIES							
SHIRE COUNTIES							
Avon	13.576	13.883	14.392	13.779	13.342	13.355	15.102
Bedfordshire	6.812	7.429	7.136	6.779	6.376	6.728	7.289
Berkshire	9.502	9.461	10.445	10.069	9.611	10.367	10.741
Buckinghamshire	6.835	7.180	8.003	7.891	7.590	7.986	8.355
Cambridgeshire	7.611	8.271	8.097	8.164	8.166	8.356	8.307
Cheshire	13.837	14.129	13.663	13.022	13.059	14.639	13.771
Cleveland	12.606	12.696	12.571	8.696	9.748	11.234	9.653
Cornwall	6.048	6.312	5.984	6.295	5.947	5.930	6.205
Cumbria	7.519	8.050	7.314	7.339	7.662	7.232	7.464
Derbyshire	12.373	13.087	12.079	11.864	11.632	11.503	12.009
Devon	14.424	14.508	14.493	14.012	13.724	13.729	14.636
Dorset	8.131	8.217	8.703	8.376	7.838	8.226	8.961
Durham	9.273	9.131	8.869	8.429	8.731	10.155	9.059
East Sussex	10.292	10.277	9.964	10.280	9.509	9.007	10.219
Essex	20.560	22.069	21.306	21.452	20.747	20.493	22.422
Gloucestershire	6.072	6.040	6.927	7.051	6.849	7.041	7.147
Hampshire	17.756	18.597	22.213	21.465	19.970	19.900	21.989
Hereford and Worcester	8.472	8.555	8.753	8.833	8.543	8.545	8.956
Hertfordshire	11.570	12.442	13.587	13.441	12.490	12.801	13.945
Humberside	15.830	16.306	14.969	12.977	13.618	14.759	14.041
Isle of Wight	2.259	1.935	1.543	1.956	1.866	1.514	1.584
Kent	21.695	22.273	21.015	21.346	20.932	21.519	21.656
Lancashire	21.328	21.407	20.802	20.996	21.752	24.052	21.667
Leicestershire	9.969	9.930	11.830	11.320	10.868	11.470	11.990
Lincolnshire	6.589	6.701	7.362	7.406	7.559	7.156	7.431
	0.00	0.077	10.000	40.2/0	10.232	10.340	10.229
Norfolk	9.040 6.736	9.033 7.046	7.703	10.248 7.592	7.431	7.781	7.946
Northamptonshire	5.631	5.745	4.641	4.606	4.943	4.527	4.706
Northumberland	9.497	9.761	9.645	9.476	9.771	9.285	9.744
North Yorkshire Nottinghamshire	13.451	13.476	14.134	13.343	13.570	15.270	14.523
Oxfordshire	6.427	6.893	7.437	7.192	7.172	7.654	7.601
Shropshire	5.477	5.016	5.514	5.479	5.509	5.590	5.667
Somerset	5.460	5.790	6.114	6.140	5.890	6.044	6.307
Staffordshire	11.563	12.052	13.777	13.692	12.815	13.419	14.195
Suffolk	7.838	7.402	8.593	8.512	8.189	8.191	8.854
Surrey	15.580	15.487	13.327	13.993	14.388	15.232	13.724
Warwickshire	7.874	7.796	7.455	6.518	6.631	6.865	6.652
West Sussex	9.283	10.060	9.345	9.778	9.807	9.833	9.607
Wiltshire	6.089	6.382	7.747	7.390	7.303	7.204	7.510
Isles of Scilly	.057	.065	.074	.037	.034	.023	.027

OPTIONS FOR FIRE NEEDS ASSESSMENT

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	exp	ехр	GRE				
	(£m)						
London Fire & CD Authority	174.236	158.820	162.551	174.627	172.898	143.678	159.445
Greater Manchester Fire & CD Authorit	44.251	45.406	42.548	48.264	48.296	47.877	44.359
Merseyside Fire & CD Authority	31.432	31.666	32.149	30.721	32.523	37.302	30.833
South Yorkshire Fire & CD Authority	20.312	21.562	19.123	17.279	17.211	19.650	18.604
Tyne and Wear Fire & CD Authority	21.813	22.287	20.590	18.798	20.187	23.926	20.414
West Midlands Fire & CD Authority	40.410	41.989	44.704	43.233	44.824	45.933	43.573
West Yorkshire Fire & CD Authority	35.800	36.580	29.978	29.042	31.450	35.878	30.082

Cover sheet to Annex B Table 5

HIGHWAY MAINTENANCE

The following options are exemplified in Table 5, below:

(i) The basic package proposed by DOE, with no usage factor for winter maintenance.

(ii) As option 1 but with a weighting of 17:1 on HGV flows compared with all vehicle flows within the weighted traffic flow variable.

(iii) As option 1 but with a lower fixed element, set judgementally at 1,750.

(iv) As option 1 but with a usage factor (including both population per km and traffic flows) for winter maintenance.

OPTIONS FOR HIGHWAY MAINTENANCE NEEDS ASSESSMENT

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	exp	GRE				
	(<u>£m</u>)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
TOTAL England	1,468.000	1,468.000	1,468.000	1,468.000	1,468.000	1,468.000	1,468.000
TOTAL Shire districts	40.939	54.097	33.960				
TOTAL Shire counties	887.468	884.582	915.284	936.396	951.587	915.268	930.419
TOTAL Metropolitan districts	300.667	303.404	345.065	356.090	346.046	368.496	359.073
TOTAL inner London boroughs	111.118	96.411	59.536	62.388	60.587	66.283	63.724
TOTAL outer Landon boroughs	127.788	129.477	114.026	112.979	109.639	117.816	114.639
TOTAL Shire areas	928.408	938.679	949.244	936.396	951.587	915.268	930.419
TOTAL Metropolitan areas	300.667	303.404	345.065	356.090	346.046	368.496	359.073
TOTAL London	238.905	225.887	173.562	175.367	170.225	184.099	178.363

OPTIONS FOR HIGHWAY MA	ITENANCE NEEDS ASSESSMENT	
------------------------	---------------------------	--

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	еф	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
		-					
SHIRE COUNTIES							
Avon	26.794	26.021	30.685	32.231	31.282	32.856	32.297
Bedfordshire	13.748	13.570	11.295	13.158	13.353	13.330	13.200
Berkshire	14.316	14.575	17.394	22.729	21.706	23.320	22.828
Buckinghamshire	18.839	17.889	18.759	20.439	20.623	20.426	20.389
Cambridgeshire	19.143	18.026	19.803	19.996	21.200	19.518	19.852
Cheshire	15.057	29.088	26.292	27.220	28.601	26.697	27.112
Cleveland	19.135	19.172	17.272	18.484	18.432	18.811	18.561
Cornwall	16.788	16.936	18.749	19.325	18.624	17.963	18.956
Cumbria	20.587	18.679	20.509	20.933	20.210	19.529	20.568
Derbyshire	27 .838	22.029	26.213	23.935	26.433	22.889	23.761
Devon	40.193	42.331	43.007	38.867	38.940	36.159	38.140
Dorset	19.738	20.768	21.840	20.603	20.869	20.149	20.438
Durham	16.974	19.354	17.832	17.001	17.640	16.210	16.864
East Sussex	17.693	17.885	17.802	17.719	18.118	17.486	17.674
Essex	42.075	41.903	35.846	44.520	44.218	45.041	44.564
Gloucestershire	17.212	15.838	16.955	15,405	16.351	14.406	15.151
Hampshire	38.306	37.002	42.102	45.241	44.807	45.319	45.175
Hereford and Worcester	19.420	18.901	24.224	22.556	23.052	21.068	22.176
Hertfordshire	26.641	27.048	24.331	31.234	30.506	31.982	31.364
Humberside	30.289	27.544	25.589	22.916	25.148	22.010	22.712
Tale of Higher	4.326	3.709	3.576	3.409	3.318	3.232	3.371
Isle of Wight Kent	47.961	46.299	42.460	47.339	47.567	47.523	47.274
Lancashire	47.911	48.869	41.241	39.103	40.020	38.718	39.016
Leicestershire	25.285	24.569	30.199	29.203	29.892	29.347	29.176
Lincolnshire	22.718	21.777	21.961	23.734	22.929	22.170	23.335
Norfolk	19.746	24.259	27.429	25.354	27.391	23.642	24.907
Northamptonshire	14.642	15.697	16.162	17.852	18.924	17.605	17.767
Northumberland	13.801	14.198	15.103	14.829	14.339	13.876	14.592
North Yorkshire	27.686	24.979	28.744	28.022	28.572	26.207	27.566
Nottinghamshire	26.937	25.813	30.569	28.574	29.455	28.603	28.608
	4/ 574	14.503	13.938	13.373	14.540	12.703	13.235
Oxfordshire	14.576		15.391	16.124	15.577	15.061	15.853
Shropshire	13.538	12.864		19.233	19.940	17.913	18.883
Somerset	17.801	16.454	20.661	28.493	30.452	27.738	28.342
Staffordshire	29.062		32.027		19.319	17.190	18.078
Suffolk	19.527	18.229	19.246	18.378	19.319	17.190	10.010
Surrey	25.934	28.237	31.087	39.637	37.404	40.808	39.789
Warwickshire	14.640	14.824	12.625	12.360	13.242	11.868	12.247
West Sussex	21.630	20.657	19.187	20.432	20.625	20.329	20.388
Wiltshire	18.959	19.120	17.179	16.437	17.964	15.566	16.213
Isles of Scilly	.020	.029	.129	.147	.142	.136	.144

OPTIONS FOR HIGHWAY MAINTENANCE NEEDS ASSESSMENT

	~ 4	201 2	201 7	001 (001 F	201	~~ 7
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	еф	exb	GRE				
	(£m)	(£m)	(£m)	(fm)	(£m)	(£m)	(£m)
GREATER LONDON							
City of London	6.259	9.141	.585	1.190	1.190	1.283	1.233
Camden	6.562	5.353	4.175	4.634	4.548	4.917	4.746
Greenwich	12.790	5.711	6.647	6.620	6.447	7.018	6.728
Hackney	6.459	4.928	4.610	5.171	4.962	5.531	5.280
Hammersmith and Fulham	5.281	5.750	3.491	3.795	3.664	4.042	3.877
Islington	7.478	2.762	3.572	3.503	3.559	3.696	3.593
Kensington and Chelsea	5.928	6.446	3.342	3.535	3.404	3.768	3.613
Lambeth	7.600	8.065	6.078	5.820	5.628	6.184	5.950
Lewisham	8.146	8.772	5.781	5.859	5.613	6.195	5.962
Southwark	11.018	11.020	5.448	5.449	5.350	5.750	5.561
Tower Hamlets	10.940	11.366	4.146	4.292	4.217	4.590	4.387
Wandsworth	8.699	6.639	5.515	5.137	5.114	5.378	5.245
Westminster	13.957	10.458	6.147	7.381	6.890	7.931	7.548
Barking and Dagenham	4.911	4.776	3.865	4.358	4.220	4.627	4.432
Barnet	8.956	9.129	6.766	7.519	7.155	7.793	7.627
Bexley	6.073	5.216	5.516	5.474	5.403	5.676	5.549
Brent	3.571	2.280	6.360	6.634	6.407	7.010	6.756
Bromley	11.541	12.538	8.841	7.790	7.670	7.963	7.860
Croydon	8.759	9.480	8.676	9.518	8.919	10.017	9.655
Ealing	7.047	8.824	7.364	6.470	6.398	6.774	6.586
Enfield	6.478	6.644	6.499	6.952	6.668	7.309	7.061
Haringey	4.653	1.524	4.258	4.426	4.257	4.659	4.506
Harrow	4.376	5.835	5.080	5.535	5.229	5.794	5.615
Havering	7.064	7.032	5.548	5.200	5.060	5.354	5.262
Hillingdon	4.409	10.326	6.717	6.615	6.380	6.888	6.698
Hounslow	6.294	5.712	4.795	4.738	4.666	4.924	4.815
Kingston-upon-Thames	5.336	4.800	3.578	3.404	3.310	3.523	3.450
Merton	5.104	5.014	4.518	4.558	4.361	4.776	4.625
Newham	7.7%	5.937	5.418	5.041	5.128	5.294	5.132
Redbridge	6.172	7.756	6.052	5.948	5.763	6.175	6.022
Richmond-upon-Thames	6.885	6.588	4.349	4.031	3.973	4.142	4.081
Sutton	5.263	5.519	4.709	4.120	4.040	4.268	4.175
Waltham Forest	7.101	4.548	5.117	4.647	4.634	4.851	4.731

OPTIONS FOR HIGHWAY MAINTENANCE NEEDS ASSESSMENT

	-						
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	еф	GRE				(117)
				45-1			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
GREATER MANCHESTER							
Bolton	6.352	6.560	8.289	8.381	8.258	8.604	8.442
Bury	3.024	3.919	5.592	6.282	5.907	6.549	6.337
Manchester	13.652	12.391	17.182	19.026	17.535	20.114	19.230
Olcham	5.910	5.867	7.491	8.777	8.508	9.135	8.851
Rochdale	3.436	3.828	6.589	5.919	5.966	6.038	5.965
Salford	5.119	5.293	7.687	9.950	9.209	10.550	10.060
Stockport	5.191	5.233	8.852	9.975	9.243	10.479	10.080
Tameside	6.410	6.444	7.518	7.713	7.413	8.083	7.789
Trafford	5.212	6.672	7.311	8.061	7.524	8.477	8.139
Wigan	5.076	7.163	8.690	8.524	8.513	8.737	8.601
MERSEYSIDE							
Knowsley	6.569	6,128	3.799	3.540	3.614	3,568	3.565
Liverpool	12.564	13.090	13.769	13.756	13.492	14.361	13.931
St Helens	5.955	4.274	5.521	4.923	5.069	4.921	4.938
Sefton	9.018	9.444	6.897	6.626	6.705	6.747	6.685
Wirral	7.521	7.236	7.702	7.691	7.635	7.768	7.745
SOUTH YORKSHIRE							
Barnsley	6.802	5.811	6.208	5.512	5.938	5.422	5.511
Doncaster	7.401	10.082	9.604	8.078	8.618	8.000	8.065
Rotherham	8.975	9.241	8.682	8.540	8.527	8.681	8.572
Sheffield	9.119	11.022	18.403	18.637	18.074	19.184	18.750
TYNE AND WEAR	7 (22	7.307	7.861	7.733	7.408	8.012	7.779
Gateshead	7.422	9.165	9.525	10.850	9.978	11.368	10.948
Newcastle upon Tyne				5.698	5.568	5.784	5.724
North Tyneside	6.340	6.178	5.306 4.229	3.820	4.019	3.788	3.831
South Tyneside	5.820 8.889	5.624 9.088	8.073	8.175	8.031	8.349	8.230
Sunderland	8.009	9.000	0.073	0.173	0.001	0.349	0.20
WEST MIDLANDS							
Birmingham	26.244	27.652	28.148	31.770	29.420	33.772	32.248
Coventry	8.307	7.646	8.890	10.375	9.556	11.012	10.514
Dudley	6.399	6.264	8.843	9.547	9.173	9.957	9.646
Sandwell	8.051	8.657	9.547	9.982	9.714	10.517	10.105
Solihull	4.944	4.964	5.314	5.791	5.692	5.980	5.830
Walsall	5.703	5.420	7.307	7.575	7.511	7.906	7.664
Wolverhampton	5.423	6.334	8.055	8.424	8.026	8.825	8.517
WEST YORKSHIRE							
Bradford	12.599	11.028	13.737	13.855	13.685	14.254	13.958
Calderdale	8.158	8.646	6.059	5.170	5.598	5.017	5.157
Kirklees	12.566	13.898	13.652	11.776	12.262	11.702	11.783
Leeds	21.839	16.028	24.225	25.697	24.666	26.746	25.901
Wakefield	8.749	9.806	10.509	9.942	9.991	10.093	9.984

Cover sheet to Annex B Table 6 OTHER SERVICES BLOCK Variants of 3 approaches are exemplified in table 6: Option (i): this option is described as DoE option, variant (a) in the main report. It consists of splitting the block of services into 2 sub-blocks to reflect the division of services within shire areas. Regression on past expenditure is used to derive a formula to distribute the control total for each sub-block. A proportion of needs assessment is reassigned between each sub block to take account of services provided concurrently in the shire areas. The sub-blocks are then added together to form the total assessment. The following indicators have been used in this option:-- enhanced population = resident population + 25% daytime net inflow - ward weighted density - social list (a sub set of factors used in the current social list) - a composite measure of sparsity with a given weight of 5%. Option (ii): this option uses the same approach as in option (i) but with the addition of an economic indicator comprising proportion of population unemployed and proportion of population lacking access to a car. Option (iii): this option is a variant of the multi-block analysis approach. This approach, proposed by the Associations, splits the block of services into 3 main blocks, each block is then split into sub blocks for county and district level services in the shire areas, in a similar way to option (i) and (ii). The first block is distributed solely on resident population, the second block

solely on enhanced population and the third on a number of indicators, the weights of which are determined by a regression analysis on past expenditure using a sub-set of services within the block. Within this approach the needs assessments for land drainage, coast protection, interest receipts and public transport pensions are based on actual expenditure. The following indicators have been used within this option:-

- resident population
- enhanced population = resident population + 25% daytime net inflow + 25% visitor nights
- ward-weighted density
- social list } as described above
- economic list }
- a composite measure of sparsity with a given weight of 5%
- Option (iv): this option is a variant of the class-based approach proposed by the Associations. This approach is based on calculating a formulae for each class of authority, using regression on past expenditure to determine the weights to attach to indicators appropriate to each class. The formulae then distributes a control for each class which, in these exemplifications, has been determined by the results of option (ii). The following indicators have been used within classes:-
 - resident population
 - ward weighted density } shire districts
 - social list
 - economic list
 - resident population } shire counties,
 - economic list } met districts
 - resident population }
 - daytime net inflow } London Boroughs
 - economic list

OPTIONS FOR OTHER SERVICES BLOCK NEEDS ASSESSMENT

	COL 1 Scaled 1986/87 exp	COL 2 Scaled 1988/89 exp	COL 3 Total 1989/90 GRE	COL 4 Option (i)	COL 5 Option (ii)	COL 6 Option (iii)	COL 7 Option (iv)
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
TOTAL England	4,303.404	4,303.404	4,303.404	4,303.404	4,303.404	4,303.404	4,303.404
TOTAL Shire districts	1,401.610	1,485.097	1,535.142	1,645.633	1,582.191	1,633.118	1,582.191
TOTAL Shire counties	511.167	611.386	604.089	615.370	585.286	650.624	585.286
TOTAL Metropolitan districts	1,395.369	1,230.365	1,204.503	1,100.465	1,275.633	1,256.071	1,274.980
TOTAL Metropolitan Police Authorities TOTAL Metropolitan Fire Authorities	-2.023 891	-3.165 739	-11.291 -2.815	-9.981 -2.502	-11.784 -2.944	-11.291 -2.815	-11.259 -2.816
TOTAL inner London boroughs	538.125	493.273	445.681	473.804	462.965	374.448	454.510
TOTAL outer London boroughs	456.903	475.250	522.264	474.518	405.201	397.407	413.573
Metropolitan Police London Fire & CD Authority	10.431	13.004	14.289 -8.687	14.289 -8.474	14.289 -7.740	14.289 -8.687	14.289 -7.656
TOTAL Shire areas	1,912.777	2,096.484	2,139.231	2,261.004	2,167.476	2,283.742	2,167.477
TOTAL Metropolitan areas	1,392.455	1,226.461	1,190.396	1,087.983	1,260.905	1,241.965	1,260.905
TOTAL London	997.976	980.250	973.546	954.138	874.716	777.456	874.716

OPTIONS	FOR OTHER	SERVICES	BLOCK	NEEDS	ASSESSMENT
---------	-----------	----------	-------	-------	------------

		. Billian					
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	exp	ехр	GRE				
	(£m)	(fm)	(£m)	(fm)	(£m)	(£m)	(fm)
SHIRE COUNTIES							
Avon	18.180	20.336	21.179	23.553	21.180	21.320	17.710
Bedfordshire	9.601	10.325	12.276	11.836	10.653	11.233	9.781
Berkshire	9.272	10.959	14.218	16.733	13.381	13.870	12.008
Buckinghamshire	8.715	12.033	11.755	11.707	9.602	10.790	10.320
Cambridgeshire	5.811	8.135	13.281	12.168	11.163	13.293	12.341
Cheshire	13.325	20.158	19.530	19.592	19.414	20.584	19.201
Cleveland	16.507	17.161	13.013	13.643	16.417	15.371	14.676
Cornwall	7.419	8.729	7.971	7.553	8.113	9.835	9.972
Cumbria	13.639	11.548	9.100	9.961	10.321	11.946	11.212
Derbyshire	22.976	27.274	19.616	17.719	19.287	20.959	20.192
Devon	15.903	21.196	19.959	21.653	21.264	24.703	21.467
Dorset	7.403	9.727	12.741	13.554	11.921	13.748	11.804
Durham	13.286	13.360	11.933	11.395	14.120	14.843	15.040
East Sussex	13.572	16.058	15.495	16.661	15.645	17.481	13.809
Essex	22.394	26.846	34.226	31.061	27.334	34.945	27.275
	7 77/	0.111	9.600	10.025	9,103	10.377	9.804
Gloucestershire	7.724	9.444	29.865	35.222	30.935	31.137	27.743
Hampshire Hereford and Worcester	8.320	12.312	12.107	12.792	11.877	13.497	12.861
Hereford and worcester Hertfordshire	15.671	19.070	19.291	21.690	17.409	18.188	16.196
Humberside	14.918	22.359	18.340	19.969	21.907	23.268	20.459
TRANSPORT OF THE PARTY OF THE P							
Isle of Wight	3.538	2.988	2.987	2.239	2.386	2.724	2.692
Kent	29.571	30.987	31.472	31.795	29.374	32.796	28.388
Lancashire	22.657	28.419	29.946	30.216	31.507	33.040	29.804
Leicestershire	17.622	23.938	18.167	18.245	17.574	18.767	17.211
Lincolnshire	7.694	10.187	11.838	10.876	11.195	14.632	13.112
Norfolk	9.505	13.680	15.710	14.082	13.884	17.812	15.612
Northamptonshire	8.297	10.346	10.265	11.936	11.271	12.466	11.219
Northumberland	6.723	7.685	5.588	6.054	6.850	7.159	7.621
North Yorkshire	13.972	17.079	13.339	14.171	13.984	16.514	15.528
Nottinghamshire	22.763	22.465	23.538	22.173	24.123	25.321	22.919
Oxfordshire	9.951	12.122	11.271	11.475	9.621	11.304	10.074
Shropshire	5.244	6.904	7.149	7.790	7.856	8.918	8.771
Somerset	8.352	10.688	9.403	8.517	7.704	10.060	8.781
Staffordshire	16.803	21.408	20.147	20.902	20.758	21.899	20.757
Suffolk	8.422	9.080	12.648	12.504	11.412	14.630	12.345
Cunami	18.782	22.027	22.224	18.750	13.845	16.606	14.901
Surrey Warwickshire	9.130	9.126	9.060	9.065	8.718	9.742	9.479
West Sussex	9.444	10.084	13.984	14.689	11.876	13.388	11.385
Wiltshire	6.362	9.752	9.856	11.404	10.301	11.457	10.816
NICESIII G	0.32	7.176	7.030				

OPTIONS FOR OTHER SERVICES BLOCK NEEDS ASSESSMENT

ondon Fire & CD Authority	-1.131	-1.278	-8.687	-8.474	-7.740	-8.687	-7.656
Sutton Waltham Forest	15.460 25.558	16.554 27.881	17.622 28.887	13.492 29.651	10.490	11.388	10.590 25.583
Richmond-upon-Thames	14.764	16.650	18.161	13.849	11.007	11.813	11.540
Redbridge	19.133	17.610	25.514	21.807	18.055	18.352	18,166
Newham	29.855	43.523	32.905	39.508	36.624	31.639	33.621
Merton	15.228	6.493	19.486	16.233	13.986	14.195	14.727
Kingston-upon-Thames	10.778	12.167	15.012	11.561	8.967	9.542	9.355
Hounslow	24.426	25.677	23.352	21.660	18.336	17.745	19.851
Hillingdon	21.956	24.935	22.913	16.625	13.031	14.639	16.254
Havering	17.946	17.930	21.445	14.402	11.979	13.674	15.506
Harrow	17.112	13.553	21.217	17.821	13.798	14.503	13.093
Haringey	37.586	31.650	31.304	33.860	32.009	27.841	31.500
Enfield	21.124	23.117	28.444	25.154	21.290	21.225	22.482
Ealing	33.181	45.740	39.200	42.954	35.819	33.372	31.547
Croydon	23.551	26.337	37.350	33.089	27.419	27.699	27.575
Bromley	22.948	19.682	28.253	19.432	15.489	17.560	19.016
Brent	45.728	35.686	37.907	44.767	39.305	35.189	35.141
BexLey	15.301	22.712	21.638	15.918	13.443	14.717	15.578
Barking and Dagenham Barnet	17.758 27.509	16.405 30.945	18.092 33.559	14.832	14.845	14.526 23.588	18.330
Westminster	44.447	40.670	57.737	55.129	53.527	52.424	47.682
Tower Hamlets Wandsworth	50.517 37.269	44.234	27.236 40.869	30.695 46.045	33.202 40.584	24.634 31.245	35.263
Southwark	45.711	44.736	36.714	40.647	42.238	32.224	44.126 35.966
Lewisham	45.216	44.389	32.538	31.816	31.420	23.796	33.881
Lambeth	45.516	60.962	42.868	50.589	49.716	36.908	48.370
Kensington and Chelsea	20.501	24.343	29.116	28.901	26.296	21.467	22.458
Islington	35.365	35.740	33.408	38.795	38.691	30.154	36.719
Hammersmith and Fulham	35.414	39.021	30.244	34.912	32.280	25.131	27.948
Hackney	43.237	36.267	33.659	43.312	42.937	31.425	41.137
Greenwich	32.753	41.589	25.597	23.970	24.150	18.415	28.483
Camden	83.263	40.837	38.860	41.119	39.977	34.267	38.125
City of London	18.916	-4.170	16.836	7.874	7.946	12.359	14.352
REATER LONDON							
	(£m)						
	1700/01 exp	ехр	GRE	(1)	(11)	(111)	(10)
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	COL 1 Scaled	COL 2 Scaled	COL 3	COL 4 Option	COL 5 Option	COL 6 Option	COL 7 Option

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option (ii)	Option (iii)	Option (iv)
	1986/87	1988/89	1989/90 GRE	(i)	(11)	(III)	(10)
	ехр	exp	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
GREATER MANCHESTER							
Bolton	31.215	28.275	27.077	26.344	28.200	28.104	27.311
Bury	17.090	17.598	16.481	13.903	14.337	15.179	15.024
Manchester	89.157	55.482	64.909	62.042	73.549	69.169	65.186
Olcham	25.416	24.239	22.828	22.840	24.664	24.326	23.759
Rochdale	23.964	23.555	20.470	19.416	21.707	21.415	22.328
Salford	29.928	28.422	27.178	24.136	28.752	28.192	28.953
Stockport	29.537	28.234	28.523	24.508	23.757	25.748	23.159
Tameside	26.683	24.949	21.776	19.702	22.059	22.171	22.758
Trafford	22.634	19.525	22.638	19.890	19.795	20.838	18.656
Wigan	33.560	29.823	28.959	24.118	28.584	29.316	31.938
Greater Manchester Police Authority		983	-2.610	-2.257	-2.535	-2.610	-2.355
Greater Manchester Fire & CD Authorit	451	511	633	577	648	633	608
MERSEYSIDE							
Knowsley	26.502	19.088	19.092	17.012	23,408	21.923	25.248
Liverpool	78.896	81.846	70.602	62.834	81.132	76.170	77.944
St Helens	27.862	21.290	19.760	17.088	19.760	19.792	20.913
Sefton	36.817	30.034	32.568	27.149	30.728	31.437	32.095
Wirral	44.261	38.777	37.542	30.804	35.583	36.118	37.397
Merseyside Police Authority	864	973	-1.759	-1.293	-1.657	-1.759	-1.622
Merseyside Fire & CD Authority			475	331	424	475	418
SOUTH YORKSHIRE							
Barnsley	28.206	23.373	19.112	15.629	21,935	22.004	26.495
Doncaster	36.261	30.662	25.349	22.713	30.281	30.605	35.362
Rotherham	25.972	22.478	21.199	18.266	24.113	24.208	28.457
Sheffield	94.163	57.254	55.862	49.296	61.373	60.929	63.452
South Yorkshire Police Authority	600	098	-1.109	953	-1.273	-1.109	-1.335
South Yorkshire Fire & CD Authority	058	-	293	243	325	293	345

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	еф	GRE				
	(£m)						
TYNE AND WEAR							
Gateshead	29.804	27.646	22.300	18.326	24.128	23.242	26.506
Newcastle upon Tyne	43.414	38.917	36.349	30.081	39.068	37.198	38.811
North Tyneside	27.284	26.171	20.749	16.605	21.138	20.388	23.148
South Tyneside	21.682	22.561	17.669	14.867	20.264	19.019	22.065
Sunderland	41.368	36.170	31.701	27.418	36.497	34.536	39.731
Northumbria Police Authority		324	-1.309	-1.096	-1.521	-1.309	-1.650
Tyne and Wear Fire & CD Authority	056	152	307	232	321	307	337
WEST MIDLANDS							
Birmingham	131.178	121.997	123.352	126.770	138.576	131.439	120.620
Coventry	27.655	26.551	35.853	33.716	36.245	35.771	32.862
Dudley	25.099	25.252	30.160	24.755	26.264	27.622	26.582
Sandwell	26.374	31.214	35.181	33.863	38.143	37.023	35.389
Solihull	13.614	12.286	18.996	17.137	16.153	17.452	15.323
Walsall	24.262	26.399	27.405	23.976	26.413	26.992	26.181
Wolverhampton	28.076	31.795	30.442	30.884	32.673	31.424	28.452
West Midlands Police Authority			-2.539	-2.698	-2.914	-2.539	-2.503
West Midlands Fire & CD Authority	214		660	689	745	660	646
WEST YORKSHIRE							
Bradford	54.522	52.040	45.814	48.887	52.820	51.062	50.355
Calderdale	24.343	20.768	17.338	16.327	17.958	18.328	19.081
KirkLees	41.799	37.337	33.623	33.660	35.815	35.710	36.671
Leeds	64.906	53.732	68.469	62.450	70.950	71.718	73.415
Wakefield	41.864	34.621	27.176	23.053	28.810	29.500	33.353
West Yorkshire Police Authority	560	786	-1.965	-1.683	-1.883	-1.965	-1.794
West Yorkshire Fire & CD Authority	113	076	447	430	481	447	463

						Annex	R lapre o	
	OPTIONS FOR OTH	ER SERVICES	BLOOK NEEDS A	ASSESSMENT				
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	
	Scaled	Scaled	Total	Option	Option	Option	Option	
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)	
	еф	600	GRE					
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	
AVON								
Bath	2.847	7.209	5.970	5.301	5.102	4.942	4.733	
Bristol	30.431	27.479	28.761	27.223	27.410	26.415	24.584	
Kingswood	2.981	2.678	4.240	4.229	3.541	3.999	3.792	
Northavon	3.929	4.760	5.110	6.148	4.920	5.657	5.265	
Wansdyke	3.080	3.267	3.213	3.543	2.932	3.324	3.242	
Woodspring	8.472	7.886	8.494	8.795	7.739	8.349	8.172	
BEDFORDSHIRE								
North Bedfordshire	4.679	4.895	6.920	8.692	7.696	7.828	7.348	
Luton	8.910	9.724	10.368	13.004	12.291	11.796	10.871	
Mid Bedfordshire	3.544	3.879	3.900	5.090	4.093	4.593	4.618	
South Bedfordshire	5.278	5.630	4.919	5.412	4.596	5.107	4.815	
BERKSHIRE								
Bracknell	3.520	3.917	4.766	4.966	3.889	4.472	4.109	
Newbury	3.596	4.880	5.541	6.784	5.048	5.711	5.514	
Reading	9.420	9.913	10.039	9.976	8.774	8.763	7.694	
Slough	3.977	5.542	7.285	9.847	7.966	7.687	6.534	
Windsor and Maidenhead	4.921	6.101	6.442	6.672	4.955	5.551	5.260	
Wokingham	4.130	5.690	5.222	5.814	3.806	4.832	4.529	
BUCKINGHAMSHIRE				7 007	4 7/0	7 270	6.774	
Aylesbury Vale	3.608	4.544	5.897	7.923	6.349 1.833	7.270	2.140	
South Bucks	2.250	2.813	3.500	3.654	2.462	2.983	2.972	
Chiltern	3.211	9.214	8.133	9.912	9.195	9.657	9.080	
Milton Keynes	6.439 3.132	6.096	6.712	7.820	5.763	6.463	6.038	
Wycombe	3.132	. 0.030	0.712	7.025	5.100	0.400	0.00	
CAMBRIDGESHIRE	4.721	5.322	6.650	6.846	6.179	6.015	5.439	
Cambridge	1.343	1.661	2.192	3.048	2.550	2.828	2.857	
East Cambridgeshire Fenland	2.745	2.538	3.384	4.084	4.008	4.383	4.137	
Huntingdonshire	3.354	3.459	5.707	7.417	6.065	6.840	6.531	
Peterborough	7.422	8.622	8.122	9.186	9.296	9.375	8.870	
South Cambridgeshire	2.067	2.368	4.190	5.465	4.180	5.023	4.826	
Social Caller Togositii C								
CHESHIRE Chester	5.895	6.205	6.261	6.774	7.009	7.007	6.823	
Congleton	3.327	2.976	3.237	3.549	3.083	3.396	3.417	
Crewe and Nantwich	5.291	5.518	5.029	5.890	5.968	5.873	5.791	
Ellesmere Port and Neston	4.699	5.025	3.982	4.294	4.754	4.680	4.613	
Halton	6.992	6.788	6.665	6.908	8.688	8.265	8.461	
Macclesfield	6.250	5.705	6.616	7.100	6.234	6.642	6.612	
Vale Royal	4.796	5.293	4.630	5.536	5.591	5.710	5.868	
Warrington	9.410	9.727	9.239	9.687	9.859	10.105	9.762	

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	exp	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
CLEVELAND							
Hartlepool	7.340	6.485	6.165	6.204	8.129	7.244	7.462
Langbaurgh-on-Tees	10.547	11.276	7.576	7.762	10.198	9.033	9.830
Middlesbrough	12.834	11.687	10.935	10.268	13.352	11.816	12.132
Stockton-on-Tees	10.318	11.191	9.939	9.944	12.582	11.555	11.939
CCRNWALL							
Caradon	2.959	3.119	3.175	3.784	3.654	3.858	3.909
Carrick	3.784	3.802	4.211	4.578	4.593	4.624	4.614
Kerrier	3.314	3.765	4.000	4.984	5.033	4.835	4.986
North Cornwall	3.023	3.299	3.427	4.420	4.144	4.491	4.301
Penwith	2.862	2.872	3.436	3.633	4.033	4.041	3.982
Restormel	3.271	3.240	4.138	4.400	4.502	4.550	4.547
CUMBRIA							
Allerdale	4.072	4.273	4.823	5.327	5.889	5.962	6.055
Barrow in Furness	5.738	5.835	4.461	4.173	4.678	4.599	4.499
Carlisle	4.924	5.698	5.247	6.606	6.870	6.876	6.672
Copeland	3.402	3.786	3.328	3.801	4.319	4.185	4.374
Eden	1.755	1.724	2.029	3.041	2.845	3.232	3.070
South Lakeland	4.832	4.891	4.775	5.293	4.852	5.373	5.210
DERBYSHIRE							
Amber Valley	4.542	4.939	4.785	5.053	5.564	5.582	5.788
Bolsover	3.950	3.596	3.071	3.174	4.281	3.987	4.437
Chesterfield	4.261	4.382	6.031	4.834	6.324	6.065	6.201
Derby	12.084	11.299	14.235	15.626	16.646	15.791	14.887
Erewash	4.796	4.908	5.116	5.267	5.634	5.595	5.737
High Peak	4.434	4.189	3.606	4.483	4.602	4.610	4.716
North East Derbyshire	4.439	4.587	3.649	4.044	4.870	4.804	5.326
South Derbyshire	2.577	2.652	2.697	3.314	3.250	3.373	3.496
Derbyshire Dales	3.100	3.202	2.805	3.733	3.458	3.682	3.667
DEVON							
East Devon	4.527	4.957	5.528	5.877	5.368	5.731	5.682
Exeter	4.984	4.660	6.632	6.194	5.976	5.925	5.496
North Devon	3.978	3.914	4.109	4.931	4.779	5.054	4.909
Plymouth	9.337	9.029	17.893	18.720	18.814	17.919	16.900
South Hams	3.602	3.146	3.511	4.165	3.796	4.101	4.035
Teignbridge	4.855	4.584	5.093	5.753	5.379	5.591	5.554
Mid Devon	2.855	2.977	2.589	3.878	3.456	3.762	3.657
Torbay	8.243	9.306	8.387	6.384	6.919	6.718	6.748
Torridge	2.255	2.186	2.371	3.251	3.177	3.351	3.287
West Devon	1.688	1.928	1.893	2.795	2.540	2.768	2.697

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	ехр	GRE				
	(£m)	(£m)	(£m)	(£m)	(fm)	(£m)	(£m)
DORSET							
Bournemouth	8.579	9.519	13.069	10.640	9.886	10.402	9.048
Christchurch	1,753	1.887	2.156	1.654	1.464	1.621	1.588
North Dorset	1.423	1,759	2.185	2.959	2.471	2.874	2.719
Poole	3.545	5.186	7.221	6.022	5.353	5.776	5.548
Purbeck	1.602	1.604	1.997	2.352	2.003	2.316	2.178
West Dorset	2.827	2.808	4.082	4.745	4.120	4.784	4.451
Weymouth and Portland	3.123	2.765	3.971	3.295	3.304	3.547	3.306
East Dorset	2.318	3.116	2.922	3.104	2.266	2.766	2.725
DURHAM							
Chester-le-Street	2.907	2.816	2.324	2.312	2.929	2.724	3.080
Darlington	8.949	7.486	6.203	6.311	7.214	7.012	6.767
Derwentside	6.135	5.898	4.279	4.421	6.047	5.372	6.077
Durham	4.773	5.156	3.993	4.221	5.125	4.861	5.098
Easington	6.326	6.334	5.424	5.138	7.107	6.270	6.930
Sedgefield	7.582	6.933	4.317	4.515	5.946	5.389	5.910
Teesdale	1.041	1.109	1.060	1.613	1.639	1.669	1.697
Wear Valley	5.100	5.497	3.236	3.983	4.970	4.582	4.871
EAST SUSSEX							
Brighton	12.045	11.693	12,970	10.951	11.582	10.937	10.286
Eastbourne	6.193	6.306	6.691	4.598	4.602	4.923	4.371
Hastings	4.872	4.656	6.318	5.937	5.790	5.602	5.240
Hove	4.579	5.957	7.712	7.081	6.809	6.591	6.128
Lewes	3,590	3.958	4.023	4.024	3.616	3.755	3.887
Rother	3.698	4.081	4.005	4.251	3.748	3.793	3.924
Wealden	5.138	5.569	5.050	6.178	4.877	5.381	5.408
ESSEX							
Basildon	9.409	11.007	7.659	7.831	7.561	7.910	7.857
Braintree	4.381	4.094	4.846	5.820	5.062	5.500	5.450
Brentwood	1.623	5.198	3.082	3.010	2.367	2.770	2.725
Castle Point	2.788	3.466	4.002	3.731	3.185	3.668	3.533
Chelmsford	2.412	4.393	6.523	6.758	5.423	6.236	5.937
Colchester	4.729	5.703	6.937	7.527	6.794	7.037	6.902
Epping Forest	5.447	6.412	5.180	5.280	4.458	4.987	5.061
Harlow	8.932	8.895	4.630	4.472	4.143	4.283	4.044
Maldon	1.617	1.818	2.055	2.573	2.105	2.339	2.338
Rochford	3.223	3.670	3.009	2.998	2.452	2.841	2.813
Southend-on-Sea	9.123	8.480	12.115	10.564	10.003	10.058	9.465
Tendring	6.117	5.994	6.667	6.047	6.213	6.478	6.516
Thurrock	8.037	8.746	5.294	6.663	6.562	6.604	6.642
Uttlesford	2.062	2.078	2.381	3.176	2.492	2.931	2.889

	coL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	1986/87 exp	1900/09 exp	GRE	(1)	(11)	(111)	(10)
	(£m)	(£n)	(£m)	(£m)	(£m)	(£m)	(£m)
SLOUCESTERSHIRE							
Cheltenham	3.647	4.610	5.906	5.539	5.122	5.146	4.735
Cotswold	2.612	3.244	3.200	4.196	3.586	4.057	3.941
Forest of Dean	3.123	2.577	2.952	3.948	3.663	3.964	3.935
Gloucester	4.568	5.225	5.870	5.862	5.578	5.614	5.159
Stroud	4.176	4.425	4.361	5.020	4.359	4.693	4.751
Tewkesbury	1.832	2.970	3.316	3.941	3.244	3.608	3.544
HAMPSHIRE							
Basingstoke and Deane	4.429	6.837	6.308	7.155	5.783	6.693	6.081
East Hampshire	4.034	3.902	3.859	4.753	3.716	4.215	4.133
Eastleigh	2.720	3.323	4.199	4.143	3.390	3.731	3.721
Fareham	2.934	3.075	4.228	4.085	3.389	3.787	3.724
Gosport	3.656	3.568	4.617	3.956	4.125	4.215	4.172
Hart	3.596	4.131	2.991	3.411	2.255	2.329	2.670
Havant	4.601	5.106	6.023	6.332	5.955	6.174	6.00
New Forest	6.190	7.215	7.180	7.639	6.363	7.430	6.900
Portsmouth	15.436	15.808	16.638	14.934	15.380	15.565	13.389
Rushmoor	3.532	4.516	4.367	4.510	3.657	3.915	3.494
Southampton	14.755	17.745	16.035	14.514	14.846	14.422	13.276
Test Valley	3.662	4.609	4.057	4.875	4.035	4.489	4.42
Winchester	3.293	3.138	4.019	4.786	3.885	4.310	4.198
HEREFORD AND WORCESTER							
Bromsgrove	2.474	2.438	3.384	3.987	3.680	3.841	4.040
Hereford	2.272	2.419	2.916	2.677	2.701	2.698	2.592
Leominster	1.666	1.609	1.649	2.895	2.535	2.806	2.64
Malvern Hills	3.587	4.007	3.534	4.654	4.077	4.421	4.418
Redditch	4.333	4.832	3.883	4.133	4.035	4.134	4.014
South Herefordshire	1.554	1.581	2.008	3.082	2.660	2.934	2.83
Worcester	4.530	4.091	4.925	4.377	4.539	4.581	4.38
Wychavon	4.117	4.208	4.034	4.721	4.014	4.349	4.37
Wyre Forest	5.817	6.009	4.524	4.593	4.412	4.582	4.57
HERTFORDSHIRE							
Broxbourne	2.888	1.759	4.023	3.922	3.166	3.677	3.47
Dacorum	5.957	5.391	6.348	6.683	5.379	6.122	5.76
East Hertfordshire	4,955	4.753	5.144	5.305	3.983	4.682	4.58
Hertsmere	5.081	4.379	4.334	4.341	3.474	4.002	3.76
North Hertfordshire	5.968	5.503	5.230	5.760	4.805	5.160	5.00
St Albans	5.084	5.468	6.026	6.460	4.823	5.457	5.17
Stevenage	5.133	3.838	4.172	3.860	3.693	3.919	3.72
Three Rivers	3.937	3.620	3.464	3.559	2.756	3.171	3.12
Watford	4.812	5.571	5.422	5.604	4.699	4.931	4.29
Welwyn Hatfield	5.591	5.502	4.506	4.412	3.692	4.102	3.97
wetwyn nati ietu	3.37	7.70	4.500	7.7.2			

	Section 1							
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	
	Scaled	Scaled	Total	Option	Option	Option	Option	
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)	
	exp	exp	GRE					
	(£m)	(£n)	(£m)	(£m)	(£m)	(£m)	(£m)	
HUMBERS IDE								
Beverley	4.283	4.143	4.344	4.836	4.568	4.841	4.913	
Boothferry	3.458	3.649	3.075	3.583	3.853	4.159	3.927	
Cleethorpes	4.262	4.339	4.103	3.674	4.133	4.305	4.160	
Glanford	2.884	3.079	2.647	3.526	3.517	3.619	3.731	
Great Grimsby	6.312	5.609	6.792	5.858	7.329	6.935	6.696	
Holderness	1.827	1.972	1.901	2.542	2.551	2.718	2.750	
Kingston upon Hull	20.069	21.763	22.061	19.867	24.428	21.651	21.704	
East Yorkshire	4.511	3.511	3.836	4.428	4.719	4.869	4.914	
Scunthorpe	6.054	4.539	3.922	3.601	4.646	4.232	4.277	
ISLE OF WIGHT								
Medina	3.720	3.601	3.761	4.128	4.247	4.260	4.141	
South Wight	2.857	2.623	2.610	2.705	2.860	2.946	2.999	
KENT								
Ashford	3,418	3.651	4.384	5.045	4.634	4.981	4.793	
	5.231	4.282	6.553	6.684	6.510	6.738	6.561	
Canterbury	4.862	4.282	4.023	4.338	3.801	3.977	3.829	
Dartford	3.966	5.365	5.453	5.846	5.968	5.907	5.875	
Dover	2.885	4.951	5.481	5.632	5.165	5.410	5.131	
Gillingham	4.855	4.386	4.881	5.341	5.045	5.082	5.001	
Gravesham	5.187	6.756	6.300	7.251	5.990	6.507	6.072	
Maidstone	5.344	6.091	8.188	9.069	8.656	8.819	8.254	
Rochester upon Medway	4.828	5.137	4.393	5.020	3.930	4.370	4.384	
Sevenoaks	5.340	5.339	5.154	5.160	5.198	5.273	5.100	
Shepway		4.577	5.224	6.074	5,980	5.874	6.045	
Swale	5.375			7.895	8.546	8.381	8.162	
Thanet	7.776	7.696	8.421 4.208	4.657	3.785	4.192	4.012	
Tonbridge and Malling Tunbridge Wells	5.501 4.266	5.819 4.570	4.749	5.364	4.289	4.192	4.290	
Turbi Toge wetts	4.200	4.510	4	3.304	7.207	4.501	4.270	
LANCASHIRE								
Blackburn	11.731	10.855	9.492	12.064	12.119	11.025	10.410	
Blackpool	10.692	12.632	13.321	9.707	11.268	12.170	10.531	
Burnley	8.201	6.610	5.748	6.479	6.848	6.414	6.119	
Chorley	4.149	4.032	3.932	4.782	4.610	4.522	4.709	
Fylde	3.385	3.883	3.729	3.629	3.349	3.474	3.313	
Hyndburn	5.295	5.361	4.526	5.383	5.343	4.957	4.943	
Lancaster	7.786	7.462	7.622	7.723	8.394	8.395	8.126	
Pendle	5.633	5.148	4.782	5.662	5.697	5.487	5.301	
Preston	9.278	7.371	8.742	10.270	10.756	10.167	9.220	
Ribble Valley	2.571	2.503	1.971	2.582	2.184	2.346	2.356	
Rossendale	4.741	4.241	3.184	3.722	3.807	3.643	3.720	
South Ribble	3.878	3.682	4.123	4.459	4.225	4.348	4.404	
West Lancashire	5.025	4.892	4.690	5.561	6.116	5.937	6.207	
Wyre	5.589	4.829	5.095	5.008	4.992	5.366	5.124	

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	ехр	GRE				
	(£m)	(fm)	(£m)	(£m)	(£m)	(£m)	(£m)
LEICESTERSHIRE							
Blaby	2.336	2.268	3.017	3.445	2.756	3.095	3.076
Charnwood	5.112	4.944	6.059	6.931	6.113	6.221	6.314
Harborough	2.565	2.515	2.302	3.120	2.578	2.847	2.877
Hinckley and Bosworth	2.775	2.084	3.657	4.303	3.846	4.016	4.094
Leicester	29.385	36.380	23.538	29.234	28.005	25.739	22.620
Melton	1.904	1.641	1.805	2.323	2.133	2.300	2.260
North West Leicestershire	3.893	3.391	3.298	3.929	3.950	3.895	4.042
Oadby and Wigston	1.794	1.894	2.299	2.351	1.879	2.029	1.993
Rutland	1.166	1.133	1.242	1.853	1.600	1.780	1.763
LINCOLNSHIRE							
Boston	2.816	2.941	3.113	2.652	2.746	3.429	2.835
East Lindsey	5.240	6.262	6.523	6.854	7.123	8.649	7.460
Lincoln	5,455	5.188	5.820	5.254	6.200	6.057	5.607
North Kesteven	3.042	3.189	3.133	4.027	3.790	4.260	4.241
South Holland	3.421	3.201	3.267	. 3.536	3.227	4.030	3.431
South Kesteven	3.293	4.125	4.848	5.746	5.560	6.038	5.837
West Lindsey	2.324	3.612	3.163	4.554	4.541	4.937	4.878
NORFOLK							
Breckland	3.678	3.993	4.190	5.815	5.336	5.764	5.706
Broadland	2.912	3.243	3.717	4.325	3.568	4.018	4.120
Great Yarmouth	4.805	5.681	5.720	5.037	5.946	5.982	5.819
North Norfolk	3.063	3.635	4.526	5.278	4.918	5.272	5.198
Norwich	6.532	8.143	9.570	8.391	9.304	8.690	8.126
South Norfolk	2.630	2.997	3.561	4.724	4.053	4.478	4.589
King's Lynn and West Norfolk	5.541	5.358	6.386	7.620	7.306	8.422	7.617
NORTHAMPTONSHIRE							
Corby	3.293	3.201	2.890	3.017	3.569	3.337	3.440
Daventry	1.772	2.103	2.334	3.372	2.939	3.231	3.194
East Northamptonshire	1.857	1.746	2.687	3.536	3.096	3.308	3.271
Kettering	2.679	2.553	3.764	4.370	4.019	4.075	3.935
Northampton	11.027	7.214	11.716	11.202	10.916	10.774	10.176
South Northamptonshire	1.707	2.017	2.253	3.204	2.614	3.016	3.022
Wellingborough	1.999	2.729	3.353	3.914	3.661	3.683	3.529
NORTHUMBERLAND '							
Alnwick	1.210	1.358	1.531	1.762	2.073	2.038	2.146
Berwick-upon-Tweed	1.135	1.230	1.387	1.553	1.765	1.859	1.865
Blyth Valley	5.318	5.364	4.108	3.668	4.606	4.424	4.773
Castle Morpeth	2.254	2.127	2.079	2.524	2.614	2.744	2.791
Tynedale	2.342	2.317	2.376	3.044	3.109	3.288	3.333
Wansbeck	4.600	4.700	3.480	3.015	4.172	3.816	4.183

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	exp	еф	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
NORTH YORKSHIRE							
Craven	2.152	2.200	2.177	2.758	2.660	2.911	2.862
Hambleton	2.623	2.971	2.918	4.179	3.925	4.342	4.341
Harrogate	5.942	6.305	6.637	7.625	6.989	7.549	7.425
Richmondshire	2.149	2.083	2.005	2.917	2.800	3.090	3.015
Ryedale	3.621	3.406	3.429	4.363	4.008	4.568	4.543
Scarborough	6.256	5.668	6.164	5.789	6.588	6.831	6.693
Selby	3.5%	4.529	3.527	4.310	4.289	4.817	4.654
York	5.189	5.840	7.602	6.581	7.563	7.348	6.924
NOTTINGHAMSHIRE							
Ashfield	4.683	4.366	4.961	4.947	6.075	5.720	6.054
Bassetlaw	5.837	6.304	4.703	5.784	6.696	6.420	6.659
Broxtowe	4.239	4.094	5.124	4.922	5.115	5.202	5.241
GedLing	5.034	4.052	5.205	5.369	5.438	5.550	5.634
Mansfield	6.582	5.306	5.198	5.143	6.185	5.749	6.131
Newark and Sherwood	4.804	4.717	4.718	5.847	6.189	6.115	6.194
Nottingham	20.586	25.476	23.604	23.517	27.139	25.019	23.106
Rushcliffe	3.508	3.629	3.953	4.473	4.222	4.517	4.536
OXFORDSHIRE							
Cherwell	3.148	4.531	5.295	6.291	5.266	5.888	5.570
Oxford	2.484	9.066	8.621	9.367	8.405	8.093	7.028
South Oxfordshire	4.671	5.247	5.193	6.208	4.812	5.504	5.361
Vale of White Horse	2.346	2.715	4.239	4.952	3.885	4.611	4.486
West Oxfordshire	2.899	3.361	3.716	4.771	3.714	4.342	4.182
SHROPSHIRE							
Bridgnorth	1.539	1.663	1.991	2.903	2.702	2.855	2.890
North Shropshire	1.685	2.265	2.212	3.207	2.998	3.261	3.205
Oswestry	1.355	1.407	1.408	1.730	1.716	1.762	1.796
Shrewsbury and Atcham	3.948	3.831	4.103	4.710	4.582	4.714	4.721
South Shropshire	1.616	1.509	1.643	2.541	2.318	2.479	2.379
Wrekin	7.389	7.388	6.512	7.315	8.216	8.034	8.158
SOMERSET							
Hendip	3.234	3.449	4.041	5.055	4.459	4.971	4.772
Sedgemoor	2.878	3.782	4.347	4.824	4.473	4.894	4.718
Taunton Deane	3.133	3.325	4.593	4.825	4.457	4.915	4.645
West Somerset	1.299	1.600	1.715	1.960	1.916	2.295	2.028
South Somerset	4.661	5.230	6.165	7.159	6.132	6.848	6.550

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	еф	exp	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
STAFFORDSHIRE							
Cannock Chase	3.805	4.007	4.351	4.615	4.852	4.808	4.836
East Staffordshire	3.921	4.114	5.085	5.989	5.908	5.964	5.670
Lichfield	3.078	2.812	3.717	4.297	3.947	4.299	4.270
Newcastle-under-Lyme	5.969	6.032	5.586	5.782	6.082	6.043	6.294
South Staffordshire	3.224	3.128	3.731	4.653	4.455	4.759	4.986
Stafford	4.824	4.008	5.331	5.950	5.586	6.033	5.756
Staffordshire Moorlands	4.391	3.901	3.551	4.996	4.390	4.534	4.604
Stoke-on-Trent	14.314	14.161	15.668	15.872	17.388	16.262	15.964
Tamworth	1.350	2.609	3.417	3.227	3.595	3.589	3.738
SUFFOLK	2.726	2.774	3.062	3.871	3.351	3.676	3.684
Babergh	1.792		2.486	2.724	2.265	2.443	2.430
Forest Heath		2.231		7.686	7.272	7.004	6.685
Ipswich	8.406	7.771	8.313 2.903	4.225	3.516	3.930	3.856
Mid Suffolk	2.802	2.933		4.835	4.223	4.610	4.438
St Edmundsbury	3.119	3.379	4.074				5.422
Suffolk Coastal	4.566	5.399	4.542	5.804	4.981	5.535	6.153
Waveney	5.298	4.207	5.871	5.618	6.028	6.269	6.153
SURREY							
Elmbridge	4.504	5.351	5.214	4.847	3.381	4.132	3.857
Epsom and Ewell	3.595	3.597	3.229	3.140	2.285	2.838	2.576
Guildford	3.211	4.452	5.888	6.403	4.765	5.654	5.092
Mole Valley	2.263	2.545	3.207	3.294	2.353	2.897	2.776
Reigate and Banstead	5.047	5.424	5.053	5.418	3.965	4.688	4.412
Runnymede	3.536	2.842	4.487	3.544	2.587	4.278	2.784
Spelthorne	2.313	4.473	4.327	4.284	3.063	3.600	3.347
Surrey Heath	3.529	1.781	3.381	3.488	2.262	2.953	2.661
Tandridge	2.979	3.807	3.080	3.428	2.519	3.132	2.967
Waverley	4.145	4.648	4.671	5.067	3.634	4.494	4.198
Woking	2.146	2.049	3.940	4.364	3.131	3.589	3.360
WARWICKSHIRE							
North Warwickshire	2.573	2.852	2.236	2.714	2.817	2.376	3.035
Nuneaton and Bedworth	7.344	7.013	5.661	5.841	6.329	6.170	6.427
Rugby	4.083	3.681	4.092	4.904	4.564	4.742	4.571
Stratford on Avon	3.734	3.698	4.104	5.334	4.605	5.132	5.126
Warwick	4.885	4.780	5.843	6.412	5.931	6.083	5.904
wdi wick	7.003	7.100					

Isles of Scilly

.307

.241

.307

	OPTIONS FOR OTHER SERVICES BLOCK NEEDS ASSESSMENT						
	coL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7
	Scaled	Scaled	Total	Option	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	(iv)
	ехр	ехр	GRE				
	(£m)	(£m)	(£m)	(fm)	(£m)	(£m)	(£m)
WEST SUSSEX							
Adur	3.193	3.092	2.954	2.562	2.342	2.505	2.515
Arun	7.091	7.531	6.911	5.848	5.174	5.836	5.583
Chichester	4.763	4.949	4.758	5.250	4.315	4.917	4.740
Crawley	4.954	8.331	4.956	4.769	3.728	4.414	3.668
Horsham	2.440	3.228	4.453	4.939	3.635	4.364	4.109
Mid Sussex	4.691	5.111	4.857	4.910	3.627	4.453	4.229
Worthing	5.254	6.192	6.863	5.335	4.811	5.113	4.783
WILTSHIRE							
Kennet	2.089	2.198	2.784	3.845	3.465	3.862	3.783
North Wiltshire	4.094	4.859	4.625	5.706	4.953	5.571	5.361
Salisbury	3.219	3.587	4.654	5.770	5.188	5.590	5.451
Thamesdown	6.961	8.379	9.190	9.665	9.277	9.663	9.061
West Wiltshire	3.704	5.136	4.456	5.138	4.553	4.875	4.833
ALL PURPOSE AUTHORITY					707		

.210

.231

.280

.197

Cover sheet to Annex B Table 7 AREA COST ADJUSTMENT The following options are exemplified in Table 7, below: (i) The labour cost factors resulting from the existing GRE methodology. (ii) As option 1 but using population instead of paybills to calculate the average wage for each area (eg inner London except the City of London, outer London). As option 2 but extending the coverage of the adjustment to the whole of (iii) the South East, with relative weightings of 1.5 to 1.0 to 0.5 between inner fringe, outer fringe and other South East districts. (iv) As option 3 but using NES-based occupational weights instead of CEC occupational weights. As option 4 but using NES data for 1987 only instead of both 1986 and (V) 1987. (vi) As option 5 but with relative weightings of 2.0 to 1.0 to 0.5 between inner fringe, outer fringe and other South East districts. The area cost adjustment for each service depends on the share of labour costs both direct and indirect - in total running costs for that service. The labour share is applied to the labour cost factor to arrive at the area cost adjustment for the service.

OPTIONS FOR LABOUR COST FACTORS

	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6
City of London	.3625	.3625	.3670	.4325	.4417	.4417
Inner London boroughs	.1912	.1845	.1884	.1876	.1890	.1890
Outer London boroughs	.1483	.1500	.1538	.1371	.1359	.1359
Inner Fringe districts	.1110	.1126	.0793	.0970	.1173	.1430
Outer Fringe districts	.0740	.0751	.0529	.0647	.0782	.0715
Other South East districts	-		.0264	.0323	.0391	.0357
Bedfordshire Berkshire Buckinghamshire East Sussex Essex Hampshire Hertfordshire Isle of Wight Kent Oxfordshire Surrey West Sussex	.0376 .0220 .0292 .0723 .0111 .0880 .0089	.0382 .0224 .0296 .0734 .0112 .0893 .0091	.0264 .0417 .0356 .0264 .0379 .0264 .0567 .0264 .0311 .0264 .0629	.0323 .0510 .0436 .0323 .0463 .0323 .0693 .0323 .0380 .0323 .0769 .0363	.0391 .0616 .0527 .0391 .0560 .0391 .0838 .0391 .0459 .0391	.0357 .0611 .0517 .0357 .0539 .0357 .0885 .0357 .0438 .0357

KEY

	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Authority	1982	Mid-1986	Mid-1986	Mid-1986	Mid-1986	Mid-1986
weights	paybills	pop'n	pop'n	pop'n	pop'n	pop'n
Fringe	1.5	1.5	1.5	1.5	1.5	2.0
district	1.0	1.0	1.0	1.0	1.0	1.0
weights	0.0	0.0	0.5	0.5	0.5	0.5
Occupational weights	1982	1982	1982	1988	1988	1988
	CEC	CEC	CEC	NES	NES	NES
NES sample	1986 &	1986 &	1986 &	1986 &	1987	1987
year(s)	1987	1987	1987	1987	only	only

Cover note for Annex B Table 8

CAPITAL

The exemplifications in the following table show:

Option (i) : needs assessment distributed in proportion to 1989/90 capital financing GREs, including the element for debt charges within service GREs.

Option (ii) : needs assessment distributed in proportion to capital allocations incorporated in the E9 GRE for 1989/90.

Option (iii) : needs assessment distributed in proportion to outstanding debt at the end of 1986/87.

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	extb	exp	GRE			
	(fm)	(£m)	(£m)	(£m)	(£m)	(£m)
TOTAL England	2,087.471	2,087.471	2,087.471	2,087.471	2,087.471	2,087.471
TOTAL Shire districts	483.435	271.641	229.494	229.494	174.615	286.116
TOTAL Shire counties	637.564	771.943	890.746	890.746	902.807	789.198
TOTAL Metropolitan districts	597.980	651.156	556.115	556.115	601.723	591.488
TOTAL Metropolitan Police Authorities	5.419	5.613	5.189	5.189	.000	15.755
TOTAL Metropolitan Fire Authorities	5.952	11.124	7.617	7.617	6.008	7.093
TOTAL inner London boroughs	172.233	182.387	158.605	158.605	160.160	176.793
TOTAL outer London boroughs	172.337	184.506	227.749	227.749	231.779	214.224
Metropolitan Police	11.928	6.582	6.009	6.009	6.009	6.009
London Fire & CD Authority	.437	2.345	5.832	5.832	4.294	.604
TOTAL Shire areas	1,120.999	1,043.584	1,120.240	1,120.240	1,077.421	1,075.314
TOTAL Metropolitan areas	609.351	667.893	568.922	568.922	607.730	614.335
TOTAL London	356.935	375.820	398.196	398.196	402.242	397.631

			Maria de la compansión de			
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	ехр	ехф	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
SHIRE COUNTIES						
Avon	25.549	23.135	22.192	22.192	21.014	21.609
Bedfordshire	17.997	22.128	14.792	14.792	14.853	24.681
Berkshire	21.150	24.274	25.172	25.172	26.378	31.341
Buckinghamshire	17.396	20.817	21.750	21.750	23.418	25.841
Cambridgeshire	14.629	15.196	20.265	20.265	20.978	13.891
Cheshire	23.686	29.620	27.880	27.880	26.221	29.435
Cleveland	20.439	26.172	20.812	20.812	23.263	32.998
Cornwall	10.104	12.996	17.393	17.393	19.526	12.389
Cumbria	10.798	13.972	14.387	14.387	13.617	14.203
Derbyshire	16.115	22.375	29.479	29.479	28.787	26.654
	10.044	27 202	20 /07	20 /07	20 05/	20 242
Devon	18.866	23.092	29.407	29.407	29.854 25.330	29.212
Dorset	22.081	6.394	21.053	16.768	14.647	7.629
Durham	7.216	9.322	20.815	20.815	23.382	18.326
East Sussex Essex	32.708	45.358	48.515	48.515	49.373	37.166
CSSCX	32.708	45.550	40.515	40.515	47.313	37.100
Gloucestershire	7.918	13.545	16.407	16.407	16.633	12.493
Hampshire	21.394	22.755	46.149	46.149	47.190	22.292
Hereford and Worcester	8.588	10.593	17.315	17.315	15.124	14.474
Hertfordshire	19.691	19.766	26.503	26.503	26.907	26.541
Humberside	23.095	26.014	29.858	29.858	31.727	21.833
Isle of Wight	2.729	3.643	5.209	5.209	5.617	4.426
Kent	26.790	32.188	43.870	- 43.870	42.913	32.297
Lancashire	28.060	42.308	45.963	45.963	46.101	42.810
Leicestershire	18.386	24.609	29.978	29.978	32.324	24.374
Lincolnshire	12.849	16.802	16.760	16.760	15.750	13.644
Norfolk	12.447	12.942	20.343	20.343	19.119	8.432
Northamptonshire	16.309	20.124	21.856	21.856	24.755	22.518
Northumberland	5.123	6.225	8.886	8.886	8.099	7.090
North Yorkshire	9.211	14.969	19.733	19.733	18.383	13.035
Nottinghamshire	23.242	29.999	25.571	25.571	23.248	31.875
Oxfordshire	11.830	11.805	11.326	11.326	15.822	12.027
Shropshire	7.151	10.495	14.013	14.013	14.657	8.733
Somerset	9.186	13.402	14.369	14.369	14.450	10.064
Staffordshire	28.534	34.061	32.825	32.825	34.692	36.814
Suffolk	14.868	20.470	19.992	19.992	20.839	16.439
Surrey	20.577	29.304	26.400	26.400	24.765	27.821
Warwickshire	9.733	12.469	11.714	11.714	10.126	13.631
West Sussex	11.086	12.084	18.760	18.760	17.674	10.261
Wiltshire	11.774	13.194	16.265	16.265	15.249	11.129

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6		
	Scaled	Scaled	Total	Option	Option	Option		
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)		
	exp	exp	GRE					
	(£m) (£m) (£m)	(£m) (£m) (£m) (£m) (£m)	(£m) (£m) (£m) (£m)	(£m) (£m) (£m) (£m)	(£m) (£m) (£m) (£m) (£m)	(£m)	(£m)	(£m)
GREATER LONDON								
City of London	16.371	12.009	6.479	6.479	9.657	15.613		
Camden	12.201	17.669	9.865	9.865	8.042	16.113		
Greenwich	25.927	24.612	11.906	11.906	12.770	10.390		
Hackney	17.628	16.547	16.071	16.071	17.762	16.328		
Hammersmith and Fulham	10.961	10.829	10.631	10.631	10.883	19.848		
Islington	10.281	11.664	12.363		13.327			
Kensington and Chelsea	6.998	6.198	7.527	7.527	6.275	9.058		
Lambeth	18.565	19.515	17.069	17.069	17.210	15.851		
Lewisham	8.226	11.280	11.977	11.977	10.627	12.442		
Southwark		14.694	16.193					
Tower Hamlets Wandsworth Westminster Barking and Dagenham	8.663	10.902	11.634	11.634	11.430			
	16.245	13.958	15.690	15.690	15.195			
	9.335 8.620 12.966 12.966	12.966	12.288	8.837				
	5.698	8.347 7.550 11.424 11.424 12.3			8.715	4.713		
Barnet			12.306	10.915				
Bexley	8.272	8.949	10.731	10.731	10.981	12.174		
Brent	10.859	12.207	15.019	15.019	13.096	13.767		
Bromley	7.138	6.564	12.337	12.337	12.211	9.558		
Croydon	5.683	6.475	13.118	13.118	10.364	8.392		
Ealing	7.778	12.156	14.562	14.562	14.744	10.585		
Enfield	7.137	10.642	14.611	14.611	16.704	11.026		
Haringey	20.943	10.148	12.897	12.897	12.290	17.891		
Harrow	6.652	12.699	12.792	12.792	14.429	10.374		
Havering	4.315	6.271	9.743	9.743	8.785	9.851		
Hillingdon	6.640	8.796	14.118	14.118	16.558	11.170		
Hounslow	7.075	8.020	9.744	9.744	8.976	9.876		
Kingston-upon-Thames	6.765	9.444	8.619	8.619	12.559	7.340		
Merton	9.302	13.162	9.658	9.658	10.512	12.013		
Newham	24.080	14.944	14.986	14.986	14.371	20.739		
Redbridge	8.454	8.479	11.153	11.153	10.339	10.516		
Richmond-upon-Thames	5.080	5.054	6.204	6.204	5.173	7.359		
Sutton	3.541	5.647	7.384	7.384	7.026	4.439		
Waltham Forest	8.578	11.832	12.704	12.704	11.639	11.528		
London Fire & CD Authority	.437	2.345	5.832	5.832	4.294	.504		
Metropolitan Police	11.928	6.582	6.009	6.009	6.009	6.009		

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	exp	exp	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
GREATER MANCHESTER						
Bolton	17.479	14.980	12.480	12.480	13.706	11.740
Bury	6.781	5.565	6.727	6.727	6.068	8.155
Manchester	34.806	29.371	30.536	30.536	38.685	39.197
Oldham	13.333	12.056	12.351	12.351	14.258	11.441
Rochdale	10.608	10.333	10.407	10.407	11.040	8.990
Salford	15.603	18.251	15.243	15.243	19.510	10.068
Stockport	10.690	9.618	11.410	11.410	10.053	9.257
Tameside	10.185	8.645	8.704	8.704	7.667	10.043
Trafford	6.572	8.525	9.231	9.231	8.394	6.214
Wigan	14.933	20.591	14.492	14.492	15.056	21.173
Greater Manchester Police Authority	.368	.821	1.199	1.199	.000	3.676
Greater Manchester Fire & CD Authorit	1.080	2.256	1.681	1.681	1.303	2.240
MERSEYSIDE						
Knowsley	5.072	9.130	9.238	9.238	10.542	4.555
Liverpool	36.314	42.059	29.599	29.599	37.514	22.608
St Helens	11.040	10.307	10.050	10.050	11.564	10.544
Sefton	9.713	10.518	12.799	12.799	12.869	10.248
Wirral	16.733	17.285	16.672	16.672	18.652	14.167
Merseyside Police Authority	.932	.988	.308	.808	.000	2.654
Merseyside Fire & CD Authority	.525	1.132	1.054	1.054	.674	.029
SOUTH YORKSHIRE						
Barnsley	9.453	11.148	7.884	7.884	7.328	11.272
Doncaster	10.971	10.156	10.167	10.167	8.999	7.628
Rotherham	11.380	12.201	9.191	9.191	8.517	14.966
Sheffield	28.171	35.789	22.173	22.173	23.529	35.167
South Yorkshire Police Authority	1.021	.591	.510	.510	.000	2.376
South Yorkshire Fire & CD Authority	1.280	2.203	1.336	1.336	1.427	1.628

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	ехр	еф	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
TYNE AND WEAR						
Gateshead	13.629	14.018	15.309	15.309	18.722	14.804
Newcastle upon Tyne	20.839	23.209	20.307	20.307	24.727	17.211
North Tyneside	9.804	11.189	12.315	12.315	13.028	11.232
South Tyneside	11.120	11.620	12.373	12.373	14.815	8.112
Sunderland	11.296	16.740	18.859	18.859	21.778	15.635
Northumbria Police Authority	.537	.505	.602	.502	.000	1.806
Tyne and Wear Fire & CD Authority	.410	.964	.871	.871	.722	.669
WEST MIDLANDS	77.926	65.023	48.637	48.637	49.617	71.716
Birmingham Coventry	19.038	25.579	16.523	16.523	19.715	19.928
Dudley	11.594	15.434	12.606	12.606	12.514	10.579
Sandwell	14.933	14.130	13.683	13.683	12.788	15.053
Solihull	4.448	7.477	6.756	6.756	5.443	6.459
Walsall	16.354	15.495	13.456	13.456	14.520	16.375
Wolverhampton	16.450	18.118	13.213	13.213	17.070	15.587
West Midlands Police Authority	1.341	.593	1.167	1.167	.000	2.349
West Midlands Fire & CD Authority	1.587	2.606	1.386	1.386	.807	1.008
WEST YORKSHIRE						
Bradford	22,199	26.977	27.802	27.802	29.293	19.585
Calderdale	6.508	7.921	8.312	8.312	7.704	8.711
Kirklees	17.873	23,107	14.461	14.461	14.356	17.356
Leeds	33.386	44.571	29.010	29.010	28.530	38.905
Wakefield	10.748	14.020	13.141	13.141	13.147	16.809
West Yorkshire Police Authority	.720	2.114	.903	.903	.000	2.893
West Yorkshire Fire & CD Authority	1.072	1.963	1.289	1.289	1.074	1.520

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	exp	еф	GRE			(,
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
						(211)
AVON					***	
Bath	2.080	1.878	.692	.692	.442	1.317
Bristol	6.501	4.598	3.458	3.458	1.924	6.601
Kingswood	1.012	.476	.513	.513	.340	.559
Northavon	1.196	.887	.733	.733	.569	1.207
Wansdyke	.915	.118	.410	.410	.274	.265
Woodspring	1.288	.288	1.189	1.189	.833	.089
BEDFORDSHIRE						
North Bedfordshire	1.966	1.664	.885	.885	.395	1.506
Luton	4.157	.539	2.718	-2.718	.807	2.547
Mid Bedfordshire	.901	.071	.524	.524	.282	.400
South Bedfordshire	.948	.862	.595	.595	.360	. 488
BERKSHIRE						
Bracknell	1.093	.645	.592	.592	.335	.944
Newbury	.835	.682	.915	915	.751	.369
Reading	1.802	.604	1.153	1.153	.559	.870
Slough	.494	.809	.998	.998	.420	.017
Windsor and Maidenhead	1.585	1.497	.848	.848	.563	1.460
Wokingham	.880	.206	.802	.802	.597	.163
BUCKINGHAMSHIRE						
Aylesbury Vale	1.580	.893	.752	.752	.377	1.070
South Bucks	.325	.099	.342	.342	.217	.141
Chiltern	.772	.778	.493	.493	.345	.023
Milton Keynes	2.492	1.579	1.196	1.196	.926	1.603
Wycombe	2.266	.940	.973	.973	.642	1.313
CAMBRIDGESHIRE						
Cambridge	1.605	1.213	.925	.925	.595	1.370
East Cambridgeshire	.888	.489	.303	.303	.187	.236
Fenland	1.304	.528	.459	.459	.294	.595
Huntingdonshire	1.645	.894	.811	.811	.469	.886
Peterborough	3.399	1.274	1.065	1.065	.609	1.977
South Cambridgeshire	.391	.108	.686	.686	.530	.117
CHESHIRE						
Chester	2.113	1.129	.816	.816	.452	.497
Congleton	.910	.703	.496	.496	.414	.553
Crewe and Nantwich	2.072	1.200	.690	.690	.446	1.562
Ellesmere Port and Neston	1.103	.979	1.010	1.010	1.305	.783
Halton	1.720	1.782	1.454	1.454	1.740	1.071
Macclesfield	1.379	.572	.976	.976	.793	.367
Vale Royal	1.204	.443	.636	.636	.464	.847
Warrington	3.386	1.863	1.360	1.360	.855	2.308

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	exp	ехр	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
CLEVELAND						
Hartlepool	3.496	1.981	1.420	1.420	1.768	4.107
Langbaurgh-on-Tees	3.435	2.207	1.551	1.551	1.715	1.734
Middlesbrough	7.410	4.921	2.832	2.832	4.122	3.885
Stockton-on-Tees	2.755	2.196	1.475	1.475	1.370	2.355
CORNWALL						
Caradon	1.132	.292	.529	.529	.444	.376
Carrick	1.348	.383	.558	.558	.351	.572
Kerrier	1.394	.549	.725	.725	.587	.671
North Cornwall	1.342	.205	.491	.491	.332	.161
Penwith	.797	.197	.368	.368	.150	.318
Restormel	1.308	.469	.544	.544	.318	.477
CIMBRIA						
Allerdale	2.339	.383	.761	.761	.514	1.010
Barrow in Furness	.853	.116	.488	.488	.203	.247
Carlisle	1.912	.924	.718	.718	.462	1,109
Copeland	1.023	.111	.644	.644	.632	.360
Eden	.610	.150	.255	.255	.138	.164
South Lakeland	.740	.455	.715	.715	.580	.614
DERBYSHIRE						
Amber Valley	2.386	.410	.660	660	.464	.652
Bolsover	1.787	.470	.426	.426	.271	.576
Chesterfield	3.916	2.654	.700	.700	.512	1.590
Derby	6.284	2.722	1.973	1.973	1.449	4.524
Erewash	1.522	.287	.726	.726	.532	.486
High Peak	1.182	.313	.473	.473	.285	.460
North East Derbyshire	.945	.655	.488	.488	.354	.535
South Derbyshire	.822	.601	.389	.389	.269	.398
Derbyshire Dales	.974	.219	.453	.453	.373	.308
DEVON						
East Devon	.939	.821	.755	.755	.514	.661
Exeter	1.563	1.353	.851	.851	.612	2.477
North Devon	1.154	.277	.494	.494	.256	.374
Plymouth	5.817	6.685	2.628	2.628	1.866	4.568
South Hams	.759	.262	.546	.546	.381	.701
Teignbridge	1.025	.541	.703	.703	.467	.190
Mid Devon	1.008	.271	.407	.407	.296	.228
Torbay	1.690	.901	.912	.912	.471	.570
Torridge	1.211	.292	.391	.391	.300	.384
			.265	.265	.170	.187

COTTONIC	COD	CARTTAL	NEEDE	ACCECCHENT
CALITONS	FUR	CAPTIAL	MEEDS	ASSESSMENT

DORSET Bournemouth Christchurch North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside Durham	COL 1 Scaled 1986/87 exp (£m) 2.147 .369 .353 2.212 .241 .934 1.424 .992	COL 2 Scaled 1988/89 exp (£m) 2.432 .177 .004 2.420 .049 .863 .616	COL 3 Total 1989/90 GRE (fm) 1.926 .338 .311 1.025	COL 4 Option (i) (£m) 1.926 .338 .311	COL 5 Option (ii) (£m)	COL 6 Option (iii)
Bournemouth Christchurch North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	1986/87 exp (fm) 2.147 .369 .353 2.212 .241 .934 1.424	1988/89 exp (£m) 2.432 .177 .004 2.420 .049 .863	1989/90 GRE (£m) 1.926 .338 .311 1.025	(fm) (fm) 1.926 .338	(ii) (£m)	(iii)
Bournemouth Christchurch North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	exp (£m) 2.147 .369 .353 2.212 .241 .934 1.424	2.432 .177 .004 2.420 .049 .863	1.926 .338 .311 1.025	(£m) 1.926 .338	(£m) 	
Bournemouth Christchurch North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	2.147 .369 .353 2.212 .241 .934 1.424	2.432 .177 .004 2.420 .049 .863	1.926 .338 .311 1.025	1.926	.905	(£m)
Bournemouth Christchurch North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	2.147 .369 .353 2.212 .241 .934 1.424	2.432 .177 .004 2.420 .049 .863	1.926 .338 .311 1.025	1.926	.905	(£m)
Bournemouth Christchurch North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	.369 .353 2.212 .241 .934 1.424	.177 .004 2.420 .049 .863	.338 .311 1.025	.338		
Christchurch North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	.369 .353 2.212 .241 .934 1.424	.177 .004 2.420 .049 .863	.338 .311 1.025	.338		
North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	.353 2.212 .241 .934 1.424	.004 2.420 .049 .863	.311 1.025			2.549
North Dorset Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	2.212 .241 .934 1.424	2.420 .049 .863	1.025	311	.285	.299
Poole Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	2.212 .241 .934 1.424	2.420 .049 .863		.011	.200	.044
Purbeck West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	.934 1.424	.863		1.025	.812	2.556
West Dorset Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	.934 1.424		.331	.331	.220	.091
Weymouth and Portland East Dorset DURHAM Chester-le-Street Darlington Derwentside	1.424		.600	.600	.466	.658
East Dorset DURHAM Chester-Le-Street Darlington Derwentside		17.00	.509	.509	.301	.617
Chester-Le-Street Darlington Derwentside		.442	.400	.400	.296	.472
Chester-Le-Street Darlington Derwentside						
Darlington Derwentside	.990	.148	.309	.309	.253	.218
Derwentside	1.750	1.751	.958	.958	.803	1.736
	1.308	.741	.309	.809	.300	.974
DOM 1 FORM	1.066	.608	.531	.531	.354	.659
Easington	1.234	.439	.734	.734	.483	.637
Sedgefield	1.945	.842	.716	.716	.703	.882
Teesdale	.576	.020	.191	.191	.145	.066
Wear Valley	1.878	.775	.501	.501	.421	1.186
EAST SUSSEX						
Brighton	3.486	1.835	1.455	1.455	.573	2.725
Eastbourne	1.342	.602	.702	.702	.377	.570
Hastings	2.364	.632	1.118	1.118	.881	.747
Hove	1.970	.422	1.205	1.205	.932	.333
Lewes	1.064	.324	.613	.613	.459	.457
Rother	.980	.698	.843	.843	.773	.728
Wealden	1.505	.289	.800	.800	.612	.756
ESSEX						
Basildon	1.619	3.229	1.071	1.071	.853	1.919
Braintree	1.072	.540	.612	.612	.380	.533
Brentwood	.897	1.581	.430	.430	.333	1.022
Castle Point	.325	.352	.464	.464	.297	.306
Chelmsford	1.953	2.472	.975	.975	.833	2.364
Colchester	2.132	.887	.991	.991	.682	1.367
Epping Forest	1.772	1.291	.641	.641	.390	1.110
Harlow	1.571	2.878	.625	.625	.476	.884
Maldon	.506	.315	.280	.280	.182	.389
	.697	.672	.556	.556	.606	.792
Rochford			1.471	1.471		
Southend-on-Sea	2.292	1.450			.701	1.482
Tendring	1.672	.941	1.079	1.079	.828	.915
Thurrock	1.883	2.647	.796	.796	.495	1.238
Uttlesford				.334		

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	еф	exp	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
GLOUCESTERSHIRE						
Cheltenham	4.045	1.716	.757	.757	.526	1.818
Cotswold	.937	.097	.453	.453	.269	.087
Forest of Dean	1.036	.256	.434	.434	.317	.294
Gloucester	1.352	.857	.678	.578	.390	.818
Stroud	1.356	.482	.596	.5%	.402	.733
Tewkesbury	.105	.007	.455	.455	.280	.032
I CWACCION Y	.10		.433	.433	.280	.052
HAMPSHIRE						
Basingstoke and Deane	1.563	1.586	.794	.794	.454	1.057
East Hampshire	.816	.446	.558	.558	.379	.678
Eastleigh	2.887	1.037	.519	.519	.360	.982
Fareham	.973	1.081	.575	.575	.436	1.001
Gosport	1.244	.652	.667	.667	.410	.910
Hart	.493	.065	.451	.451	.298	110
Havant	.932	1.053	1.213	1.213	1.098	.608
New Forest	2.189	.778	1.174	1.174	.999	.353
Portsmouth	6.621	3.474	2.017	2.017	1.285	7.073
Rushmoor	2.473	1.209	.847	.847	.753	2.810
Southampton	2.174	.982	1.987	1.987	1.276	.925
Test Valley	1.350	.997	.590	.590	.398	.656
Winchester	1.696	1.696	.670	.670	.543	1.148
HEREFORD AND WORCESTER						
Bromsgrove	.724	.259	.456	.456	.297	.229
Hereford	.712	.435	.302	.302	.152	.479
Leominster	.817	.050	.234	.234	.118	.117
Malvern Hills	1.616	.305	.505	.505	.319	.485
Redditch	.961	.742	.494	.494	.348	.457
South Herefordshire	.815	.080	.289	.289	.174	.122
Worcester	1.423	.868	.542	.542	.346	.889
Wychavon	1.237	.354	.559	.559	.376	.512
Wyre Forest	1.304	.754	.550	.550	.365	1.023
HERTFORDSHIRE						
Broxbourne	1.874	1.327	. 484	.484	.289	.596
Dacorum	1,170	1.001	.944	.944	.744	1.113
East Hertfordshire	1.665	.520	.732	.732	.505	.674
Hertsmere	.554	.345	.528	.528	.304	.454
North Hertfordshire	.690	.893	.685	.685	.410	.525
St Albans	1.210	1.176	.800	.800	.456	1.301
Stevenage	1.997	2.410	.558	.558	.440	3.049
Three Rivers	.282	.077	.506	.506	.414	.189
Watford	1.009	.887	.654	.654	.365	.912
Welwyn Hatfield	.979	1.013	.553	.553	.375	1.106

OPTIONS	FOR	CAPITAL	NEEDS	ASSESSMENT
---------	-----	---------	-------	------------

		-	~ 7	COL 4	COL 5	COL 6
	COL 1	COL 2	COL 3	Option	Option	Option
	Scaled	Scaled	Total		(ii)	(iii)
	1986/87	1988/89	1989/90	(i)	(11)	(111)
	ехр	exp	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
HUMBERS IDE	4 757	400	.659	.659	.524	.742
Beverley	1.357	.688	.469	.469	.389	.143
Boothferry	.681	1.215	.558	.558	.419	.864
Cleethorpes	1.076	.513	1.370	1.370	1.904	.553
Glanford	3.023	1.328	.701	.701	.420	.967
Great Grimsby	.651	.379	.511	.511	.518	.256
Holderness	11.053	8.474	4.987	4.987	6.534	5.986
Kingston upon Hull	1.122	.919	.496	.496	.289	.668
East Yorkshire Scunthorpe	1.598	1.295	.740	.740	.734	1.412
Scunthorpe	1.370	1.273		0		1.412
ISLE OF WIGHT						
Medina	1.505	.199	.542	.542	.282	.434
South Wight	1.210	.470	.643	.643	.664	. 474
KENT						
Ashford	1.622	1.192	.573	.573	.377	1.490
Canterbury	2.442	1.582	1.413	1.413	1.291	1.188
Dartford	.857	.427	.747	.747	.728	.499
Dover	1.095	.664	.730	.730	.411	.410
Gillingham	.976	.446	.642	.642	.309	.421
Gravesham	1.644	.597	.641	.641	.342	.903
Maidstone	1.041	.250	.819	.819	.483	.517
Rochester upon Medway	2.230	1.467	1.372	1.372	1.352	1.751
Sevenoaks	.810	.058	.684	.684	.521	.171
Shepway	1.411	.642	.702	.702	.415	.705
Swale	2.965	1.077	.951	.951	.780	1.427
Thanet	1.792	.805	1.192	1.192	.740	1.140
Tonbridge and Malling	.656	.105	.656	.656	.511	.087
Tunbridge Wells	.894	.604	.606	.606	.286	.505
LANCASHIRE						
Blackburn	7.973	2.493	2.646	2.646	3.379	2.985
Blackpool	3.303	2.202	2.214	2.214	1.663	2.597
Burnley	4.260	1.734	1.160	1.160	1.082	1.537
Chorley	1.843	.635	.626	.626	.511	.769
Fylde	1.055	.407	.478	.478	.269	.412
Hyndburn	2.400	.838	.809	.809	.716	.868
Lancaster	2.330	.956	1.113	1.113	.805	1.660
Pendle	3.000	.512	.711	.711	.430	.818
Preston	3.826	1.731	2.028	2.028	1.981	1.725
Ribble Valley	.813	.203	.307	.307	.237	.194
Rossendale	1.757	.460	.487	.487	.411	.494
South Ribble	1.116	.783	.577	.577	.450	.552
West Lancashire	.999	.774	.774	.774	.720	.517
Wyre	.799	.555	1.038	1.038	1.086	1.002

COL 1 Scaled 1986/87 exp (£m)	COL 2 Scaled 1988/89 exp	COL 3 Total 1989/90 GRE	COL 4 Option (i)	COL 5 Option (ii)	COL 6 Option (iii)
1986/87 exp	1988/89 exp	1989/90 GRE			
еф	ехр	GRE	(i)	(ii)	(iii)
(£m)	(£m)				
		(£m)	(£m)	(£m)	(£m)
.622	.369	.483	.483	.438	.295
1.798	.695	.838	.838	.573	.724
.721	.364	.334	.334	.242	.426
1.085	.903	.480	.480	.335	.575
10.171	6.241	4.316	4.316	4.571	4.578
.840	.322	.216	.216	.113	.191
1.290	.582	.432	.432	.265	.600
.427	.150	.310	.310	.204	.213
.328	.077	.205	.205	.131	.091
.578	.209	.319	.319	.166	.167
1.617	.250	.680	.680	.267	.485
.890	.419	.591	.591	.310	.356
.672	.141	.441	.441	.300	.235
.785	.446	.383	.383	.242	.194
1.429	.348	.658	.658	.459	.806
2.052	.130	.428	.428	.238	.335
1.245	.136	.537	.537	.288	.279
.931	.199	.549	.549	.390	.204
1.822	1.317	.781	781	.526	.675
1.582	.538	.862	.862	.584	.623
5.547	3.224	1.247	1.247	.646	3.475
1.259	.347	.565	.565	.437	.109
2.217	.395	.852	.852	.499	.756
.414	.177	.801	.801	.981	.264
.985	.602	.266	.266	.126	.571
.475	.178	.338	.338	.198	.186
1.799	1.146	.496	.496	.318	1.420
4.308	3.904	1.472	1.472	.647	4.875
					.246
1.306	.383	.457	.457	.289	1.726
.917	.427	.354	.354	.353	.256
.421	.124	.168	.168	.080	.140
		.547	.547	.428	1.347
			.327	.259	.472
					.256
1.569	.614	.643	.643	.591	.903
	1.798 .721 1.085 10.171 .840 1.290 .427 .328 .578 1.617 .890 .672 .785 1.429 2.052 1.245 .931 1.822 1.582 5.547 1.259 2.217 .414 .985 .475 1.799 4.308 .681 1.306	1.798 .695 .721 .364 1.085 .903 10.171 6.241 .840 .322 1.290 .582 .427 .150 .328 .077 .578 .209 1.617 .250 .890 .419 .672 .141 .785 .446 1.429 .348 2.052 .130 1.245 .136 .931 .199 1.822 1.317 1.582 .538 5.547 3.224 1.259 .347 2.217 .395 .414 .177 .985 .602 .475 .178 1.799 1.146 4.308 3.904 .681 .105 1.306 .383 .917 .427 .421 .124 1.592 .967 .898 .396 .879 .395	1.798 .695 .838 .721 .364 .334 1.085 .903 .480 10.171 6.241 4.316 .840 .322 .216 1.290 .582 .432 .427 .150 .310 .328 .077 .205 .578 .209 .319 1.617 .250 .680 .890 .419 .591 .672 .141 .441 .785 .446 .383 1.429 .348 .658 2.052 .130 .428 1.245 .136 .537 .931 .199 .549 1.822 1.317 .781 1.582 .538 .862 5.547 3.224 1.247 1.259 .347 .565 2.217 .395 .852 .414 .177 .801 .985 .602 .266 .475 .178 .338	1.798 .695 .838 .838 .721 .364 .334 .334 1.085 .903 .480 .480 10.171 6.241 4.316 4.316 .840 .322 .216 .216 1.290 .582 .432 .432 .427 .150 .310 .310 .328 .077 .205 .205 .578 .209 .319 .319 1.617 .250 .680 .680 .890 .419 .591 .591 .672 .141 .441 .441 .785 .446 .383 .383 1.429 .348 .658 .658 2.052 .130 .428 .428 1.245 .136 .537 .537 .931 .199 .549 .549 1.822 1.317 .781 .781 1.582 .538 .862 .862 5.547 3.224 1.247 1.247 1.259	1.798 .695 .838 .838 .573 .721 .364 .334 .334 .242 1.085 .903 .480 .480 .335 10.171 6.241 4.316 4.316 4.571 .840 .322 .216 .216 .113 1.290 .582 .432 .432 .265 .427 .150 .310 .310 .204 .328 .077 .205 .205 .131 .578 .209 .319 .319 .166 1.617 .250 .680 .680 .267 .890 .419 .591 .591 .310 .672 .141 .441 .441 .300 .785 .446 .383 .383 .242 1.429 .348 .658 .658 .459 2.052 .130 .428 .428 .238 1.582 .136 .537 .537 .288 .931 .199 .549 .549 .390

	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	eφ	ехр	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
NORTH YORKSHIRE						
Craven	.757	.087	.274	.274	.166	.199
Hambleton	.875	.192	.458	.458	.361	.322
Harrogate	3.965	3.854	.916	.916	.595	4.969
Richmondshire	.469	.059	.351	.351	.213	.130
Ryedale	.938	.441	.513	.513	.345	.297
Scarborough	1.133	.324	.902	.902	.636	.432
Selby	.934	.198	.472	.472	.305	.164
York	1.979	.973	.779	.779	. 435	1.167
NOTTINGHAMSHIRE						
Ashfield	2.226	1.272	.639	.639	.470	1.241
Bassetlaw	1.864	.794	.621	.621	.380	.600
Broxtowe	1.908	.809	.648	.648	. 430	.945
GedLing	1.705	1.096	.764	.764	.604	.990
Mansfield	2.146	1.170	.731	.731	.499	1.328
Newark and Sherwood	1.574	.845	.691	691	.420	.691
Nottingham	10.567	6.532	4.710	4.710	5.765	4.441
Rushcliffe	1.724	.791	.567	.567	.389	.658
OXFORDSHIRE						
Cherwell	1.080	.183	.702	.702	.347	.523
Oxford	2.360	3.484	1.030	1.030	.418	.398
South Oxfordshire	1.160	.635	.846	.846	.667	.738
Vale of White Horse	.176	.079	.612	.612	.399	.063
West Oxfordshire	.863	.338	.548	.548	292	.327
SHROPSHIRE						
Bridgnorth	.320	.116	.304	.304	.181	.194
North Shropshire	1.260	.166	.309	.309	.169	.249
Oswestry	.497	.138	.194	.194	.131	.148
Shrewsbury and Atcham	1.010	.534	.543	.543	.353	.408
South Shropshire	.386	.075	.227	.227	.114	.049
Wrekin	1.377	1.194	.948	.948	.796	.902
COMEDCET						
SOMERSET Mendip	.995	.236	.526	.526	.321	.443
Sedgemoor Sedgemoor	.983	.582	.591	.591	.410	.586
Taunton Deane	1.476	.579	.576	.576	.370	.863
West Somerset	.493	.115	.248	.248	.196	.159
South Somerset	1.413	.335	.821	.821	.548	1.028
South Somerset	1.413	.555	.021	.021		1.020

	col. 1	COL 2	COL 3	COL 4	COL 5	COL 6	
	Scaled	Scaled	Total	Option	Option	Option	
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)	
			1909/90 GRE	(1)	(11)	(111)	
	ехр	еф	GRE				
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)	
STAFFORDSHIRE							
Cannock Chase	.786	.435	.582	.582	.414	.624	
East Staffordshire	2.391	.425	.682	.682	.413	.753	
Lichfield	.832	.263	.465	.465	.281	.324	
Newcastle-under-Lyme	1.097	.542	.679	.679	.406	.750	
South Staffordshire	.550	.307	.615	.615	.541	.246	
Stafford	1.382	1.019	.715	.715	.517	.971	
Staffordshire Moorlands	.998	.385	.563	.563	.428	.328	
Stoke-on-Trent	5.688	3.658	2.455	2.455	2.240	2.860	
Tamworth	1.283	.615	.482	.482	.398	1.443	
SUFFOLK							
Baberoh	1.118	.739	.648	.648	.718	.637	
Forest Heath	.706	.377	.374	.374	.204	.553	
Inswich	3.354	1.520	1.007	1.007	.639	1.537	
Mid Suffolk	1.179	.522	.530	.530	.475	.707	
St Edmundsbury	.767	.224	.563	.563	374	.778	
Suffolk Coastal	1,416	.466	.961	.961	.770	.569	
Waveney	2.442	1.180	.892	.892	.670	1.263	
SURREY							
Elmbridge	1.301	1.873	.702	.702	.402	1.523	
Ensom and Ewell	.517	.879	.404	.404	.210	.347	
Guildford	1.917	1.660	.784	.784	.433	1,220	
Mole Valley	.907	.440	.448	.448	.303	.604	
Reigate and Banstead	.824	.476	.723	.723	.462	.723	
Runnymede	.939	.261	.567	.567	.319	.359	
Spelthorne	1.375	.600	.729	.729	.517	1.009	
Surrey Heath	.668	.487	.517	.517	.396	.571	
Tandridoe	.797	.251	.445	.445	.271	.159	
Waverley	1.342	.990	.665	.665	.465	1.053	
Woking	1.524	1.919	1.259	1.259	1.635	1.440	
woking	1.324	1.919	1.29	1.29	1.000	1.440	
WARWICKSHIRE							
North Warwickshire	.805	.378	.464	.464	.504	.660	
Nuneaton and Bedworth	1.249	.605	.741	.741	.500	.595	
Rugby	1.534	.086	.598	.598	. 407	.116	
Stratford on Avon	.846	.213	.670	.670	.552	.141	
Warwick	1.291	.761	.786	.786	.498	1.315	

Annex B Table 8

	OPTIONS FOR CA					
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6
	Scaled	Scaled	Total	Option	Option	Option
	1986/87	1988/89	1989/90	(i)	(ii)	(iii)
	exb	еф	GRE			
	(£m)	(£m)	(£m)	(£m)	(£m)	(£m)
WEST SUSSEX						
Adur	.822	.809	.346	.346	.219	.812
Arun	.495	.227	1.014	1.014	.753	1.025
Chichester	1.254	.594	.755	.755	.521	.457
Crawley	1.187	.628	.615	.615	.445	.315
Horsham	.965	.774	.657	.657	.515	.772
Mid Sussex	.554	.343	.639	.639	.408	.290
Worthing	1.357	.855	.989	.989	.893	1.635
VILTSHIRE						
Kennet	.878	.003	.442	.442	.274	.047
North Wiltshire	1.885	.423	.610	.610	.353	.936
Salisbury	.985	.272	.632	.632	.314	.372
Thamesdown	7.894	9.096	1.088	1.088	.702	13.296
West Wiltshire	1.476	.528	.544	.544	.309	.494
ALL PURPOSE AUTHORITY						
Isles of Scilly	.186	.175	.113	.113	.077	.191

ANNEX C - INDEX OF PAPERS

SERVICE BLOCK	PAGE NO
EDUCATION	2 - 4
PERSONAL SOCIAL SERVICES	5 - 6
HOME OFFICE SERVICES - FIRE	7
HOME OFFICE SERVICES - POLICE	8
HIGHWAY MAINTENANCE	9
OTHER SERVICES	10 - 11
AREA COST ADJUSTMENT	12
CORE GROUP	13
CAPITAL	14

NSG:NASG(89)	EDUCATION	TITLE
1	1	LGF(G)(NG)(88)7 ANNEX
10	3	Client groups in the four education blocks
11	4	Basis of options for AEN weights
12	5	Special school pupil numbers
13	6	Distributional effects of new AEN index
14	7	Alternative data sources for the lone parent indicator in the additional educational needs
15	8	Distributional effect of abolishing ILEA
44	10	Proportion of GRE and needs assessment distributed by AEN
45	11	Alternative exemplifications for education :the CIPFA study
46	12	Further alternative exemplifications for education. A paper by the ALA.
47	13	The distribution of 14 and 15 year old pupils. A paper by DES.
48	14	Composition of the education other services block
49	15	The lone parent indicator: Preliminary results. A paper by the AMA.
50	16	Additional education needs weighting. A paper by the ACC.
51	17	Careers services needs assessment. A paper by the ACC.
53	18	Options for weightings on the AEN index. A note from the LBA.
80	20	Adjustment for additional educational need paper by DOE/DES exemplifies their proposed options and the ACC's proposals for AEN weighting using 1989/90 indicators
81	21	Alternative weighting for the AEN

		adjustment. A paper by the ALA.
82	22	Alternative weighting for the AEN adjustment. A paper by the ALA.
83	23	Assessment of client group for the post 16 services block.
84	25	Alternative methods of splitting the other services control total between client groups. A paper by DES.
85	25a	Sparsity: proposals for simplifying the sparsity adjustment.
86	26	Sparstiy adjustment. A paper by the ACC.
87	27	Lone parent family indicator: reporting further results. A paper by the AMA.
107	27a	The additional of career's to the education assessment.
108	28	Aggregate expenditure on education services.
109	29	Additional educational needs adjustment - exemplifications of ALA options.
110	30	The sparsity adjustment.
111	31	Disaggregation of options into the four service blocks.
128	33	Additional educational needs adjustment- Exemplification of ACC and main options including careers.
129	34	Additional educational needs adjustment. A paper by the ALA.
130	32	The sparsity adjustment. A paper by the ACC.
131	35	The sparsity adjustment. A paper by DES.
132	36	Updating the lone parent factor - exemplification of options.
133	37	Disaggregation by service of ILEA expenditure. A paper by DES.
136	38	Proposals for producing a combined client group for the post 16 sector.

151	40	Fringe counties: Recoupment trade w London.	rith
153	41	Education: Draft Report	

PERSONAL SOCIAL SERVICES

NSG:NASG(89)	PSS	TITLE
3	1	LGF(G)(G)(88) 7 ANNEX B
20	3	Details of the present method of assessing GRE for children's PSS
21	4	Exemplifications of options for children's PSS
22	5	Simplified needs assessments for other social services. Details of the present method of assessing GRE for other social services
40	7	Details of the present method of assessing GRE for the Elderly
41	8	Summary of research report on needs assessment for Elderly PSS from the centre for health economics, York University
42	9 .	Exemplification of the options for the new social services needs assessments for the elderly as presented in the consultation paper
43	10	Updated exemplifiactions of elderly PSS options
70	13	Apportionment of social work and administration expenditure between client groups. A paper by DH.
71	14	Exemplification of updated and further options for children's PSS. A paper by DOE/DH.
72	15	Options for the other social services block
73	16	Progress in developing a new composite indicator of disadvantage
74	17	Number of discharges from mental hospitals. Note by DH.
75	18	Data collected by the 1981 PSSRU survey of residential homes.
76	19	Exemplifications of further options for

residential care. A paper by DOE/DH. 77 20 Variations between expenditure and GRE/needs assessments for domiciliary care. A paper by the AMA. Exemplifications of further options for domiciliary care. A paper by DOE/DH. 78 21 134 23 Exemplification of the assessment for children's services based on disaggregated expenditure data. 135 24 Exemplification of the new composite social indicator in the other services assessment. 152 25 PSS: Draft report 156 Note on exemplifications of children's PSS 26 options

HOME OFFICE SERVICES - FIRE

NSG:NASG(89)	FIRE	TITLE
6	1	LGF(G)(NG)(88)7 ANNEX C
54	3	Fire needs assessment based on single indicators
55	4	Fire needs assessment based on establishments
56	5	A model based approach for fire needs assessments
57	6	Note on Ridership factors
95	8	Risk area categorisation
96	9	Rolling forward the present fire formula
97	10	Regression based formalae for fire : option A
98	11	Regression based formulae for fire : option B
99	12	Regression based formulae for fire : options D and E
100	13	Regression based formulae for fire : inclusion of establishments and inspectors
101	14	Note on civil defence
113	15	Note on fulltime/retained staff costs. A paper by HO.
122	16	Fire needs assessment - a disaggregated weighted unit cost approach. A paper by the ACC.
147	17	Fire: Draft report
150	18	Treatment of special areas and additional exemplifications on fire

HOME OFFICE SERVICES - POLICE

NSG: NASG(89)	POLICE	TITLE
5	1	LGF(G)(88) ANNEX C
52	3	Civilianisation. A paper by the ACC.
54	4	Establishments and civilianisation. A paper by HO.
102	5	Top-slicing of the Metropolitan police budget from GRE control total. A paper by the HO.
103	6	Police and civilians in key posts.
104	7	Exemplifications using establishments and civilians
105	8	Alternative model-based approach. A paper by the ACC.
117	9	Note on statistics held by the Home Office on the matrix of indicators.
146	10	Police: Draft report
149	11	The effect of the inclusion of civilians.
160	12	Police needs assessment - a unit cost approach. A paper by the ACC.

HIGHWAY MAINTENANCE

NSG:NASG(89)	<u>HM</u>	TITLE
2	1	LGF(G)(NG)(88)7 ANNEX D
16	2	Highway maintenance needs assessment: exemplifications.
17	3	Alternative classification and data resources.
35	5	Further exemplifications.
86	6	Incorporating winter maintenance. A paper by DOE/DTP.
87	7	Traffic flow data/fixed element/regression analysis. A note by the AMA.
88	8	DOE response to AMA note.
114	9	Sensitivity of usage factors. A note by the AMA.
115	10	Weighted traffic flows. A paper by DTP.
116	11	Bridge maintenance. A paper by the LBA.
124	12	Additional exemplifications.
154	13	Highway maintenance: Draft report
159	14	The calculation of specific AADFs. A paper by DTP.

OTHER SERVICES BLOCK

NSG:NASG(89)	OSB	TITLE
4	1	LGF(G)(NG)(88)7 ANNEX E
28	3	The use of actual expenditure. A paper by the ACC
29	4	Exemplifications of options for OSB
30	5	Density indicator data
31	6	Visitor nights data
32	7	Proposals for grouping services for analysis. A paper by the ADC.
33	8	Refuse collection and sparsity indicator. A paper by the ADC.
63	11	Further exemplifications of the OSB
89	12	Sensitivity tests of regression analysis in paper OSB 11
90	13	OSB needs assessment: sparsity indicator sensitivity analysis
91	14	Offences and population data
92	15	Non-HRA expenditure
93	16	National parks
119	17	Exemplification of class-based approach
120	18	Public transport - local rail and London. A paper by DTP
121	19	Main options for OSB
123	20	Work on a composite indicator
137	20a	Sparsity. A paper by the ADC
138	21	National parks. A paper by the ACC
139	22	Concurrent services. A paper by the ACC

140	23	Visitor nights. A paper by the ACC
141	24	Interest receipts. A paper by the ACC
142	26	Further exemplifications: testing the social and economic lists and using gross inflows
143	27	Other Services: Draft report

AREA COST ADJUSTMENT

NSG:NASG(89)	ACA	TITLE
7	1	LGF(G)(NG)(88)7 ANNEX F
59	3	Area cost adjustment
60	4	Non labour costs
61	5	Sensitivity to varying adjustment factor
62	6	Regions and islands
118	7	Extending the London fringe to whole of South East/effect of changing occupational weights/effect of including teachers/effect of updating NES sample
125	8	Rents and rates: exemplification of office cost differences
126	9	New earnings survey. A paper by the LBA.
127	10 .	The cost of teachers. A paper by the LBA.
144	11	Further exemplifications
145	12	Area cost adjustment: Draft report

CORE GROUP

NSG:NASG(89)	CORE	TITLE
8	1	Cross service issues
58	3	Application of regression analysis to needs assessment

CAPITAL

NSG:NASG(89)	CAP	TITLE
38	1	New needs assessment for capital financing
64	2	Illustrative aggregates for the 1990/91 settlement
65	3	Illustrative calculation of capital financing needs assessment
66	4	Exemplification of options for financing of pre-1990 expenditure
155	5	Matters arising from second meeting
157	6	Capital: Draft report